If x and y are real numbers satisfying x 2 + 2 y 2 + 2 1 ≤ x ( 2 y + 1 ) , find x .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
This was an RMO problem if I'm correct
P = x 2 + 2 y 2 + 2 1 ≤ x ( 2 y + 1 ) ⇔ P = 2 x 2 − x + 2 1 + 2 x 2 − 2 x y + 2 y 2 ≤ 0 ⇔ P = 2 x 2 − 2 x + 1 + 2 x 2 − 4 x y + 4 y 2 ≤ 0 ⇔ P = 2 ( x − 1 ) 2 + 2 ( x − 2 y ) 2 ≤ 0 But P is always greater than or equal to 0 ⇒ { x − 1 = 0 x − 2 y = 0 ⇒ x = 1
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Completing the Square - Intermediate
x 2 + 2 y 2 + 2 1 ≤ x ( 2 y + 1 )
Multiply both sides By 2
2 x 2 + 4 y 2 + 1 ≤ 4 x y + 2 x
2 x 2 − 4 x y + 4 y 2 − 2 x + 1 ≤ 0
( x 2 − 4 x y + 4 y 2 ) + ( x 2 − 2 x + 1 ) ≤ 0
( x − 2 y ) 2 + ( x − 1 ) 2 ≤ 0
The sum of 2 squares can never be negative for real numbers
Therefore the expression must equal 0
( x − 2 y ) 2 + ( x − 1 ) 2 = 0
Sum of the squares of two real numbers is zero only when the two real numbers themselves are zero
x = 1