Carefully Constructed Inequality

Algebra Level 3

If x x and y y are real numbers satisfying x 2 + 2 y 2 + 1 2 x ( 2 y + 1 ) x^2 + 2y^2 + \dfrac12 \leq x(2y + 1) , find x x .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

T Sidharth
Jul 27, 2016

Relevant wiki: Completing the Square - Intermediate

x 2 + 2 y 2 + 1 2 x ( 2 y + 1 ) x^2+2y^2+\dfrac{1}{2}\leq x(2y+1)

Multiply both sides By 2

2 x 2 + 4 y 2 + 1 4 x y + 2 x 2x^2 +4y^2 +1 \leq 4xy +2x

2 x 2 4 x y + 4 y 2 2 x + 1 0 2x^2 -4xy +4y^2 -2x +1 \leq 0

( x 2 4 x y + 4 y 2 ) + ( x 2 2 x + 1 ) 0 (x^2 -4xy +4y^2) +(x^2 -2x +1) \leq 0

( x 2 y ) 2 + ( x 1 ) 2 0 {(x -2y)}^{2} + {(x-1)}^{2} \leq 0

The sum of 2 squares can never be negative for real numbers

Therefore the expression must equal 0

( x 2 y ) 2 + ( x 1 ) 2 = 0 {(x -2y)}^{2} + {(x-1)}^{2} = 0

Sum of the squares of two real numbers is zero only when the two real numbers themselves are zero

x = 1 x = 1

This was an RMO problem if I'm correct

Arulx Z - 4 years, 10 months ago
Hải Trung Lê
Jul 24, 2016

P = x 2 + 2 y 2 + 1 2 x ( 2 y + 1 ) P = x 2 2 x + 1 2 + x 2 2 2 x y + 2 y 2 0 P = x 2 2 x + 1 2 + x 2 4 x y + 4 y 2 2 0 P = ( x 1 ) 2 2 + ( x 2 y ) 2 2 0 But P is always greater than or equal to 0 { x 1 = 0 x 2 y = 0 x = 1 P=x^2+2y^2+\dfrac{1}{2}\leq x(2y+1) \\ \Leftrightarrow P=\dfrac{x^2}{2}-x+\dfrac{1}{2}+\dfrac{x^2}{2}-2xy+2y^2\leq 0\\ \Leftrightarrow P=\dfrac{x^2-2x+1}{2}+\dfrac{x^2-4xy+4y^2}{2}\leq 0\\ \Leftrightarrow P=\dfrac{(x-1)^2}{2}+\dfrac{(x-2y)^2}{2}\leq 0\\ \text{But P is always greater than or equal to 0} \\ \Rightarrow \left\{\begin{array}{ll} x-1=0\\ x-2y=0 \end{array}\right.\\ \Rightarrow \color{#D61F06}{x=1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...