An algebra problem by Kushal Bose

Algebra Level 4

Let { a n } \left \{ a_n \right \} be a sequence of real numbers satisfying a n < 1 |a_n|<1 for all n n . Define A n = 1 n ( a 1 + a 2 + a 3 + . . . + a n ) A_n=\dfrac{1}{n}(a_1+a_2+a_3+...+a_n) for n 1 n \geq 1 . Then evaluate lim n n ( A n + 1 A n ) \displaystyle \lim_{n \to \infty}\sqrt{n}(A_{n+1}-A_n) .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

A n = 1 n ( a 1 + a 2 + a 3 + + a n ) A n + 1 = 1 n + 1 ( a 1 + a 2 + a 3 + + a n + a n + 1 ) = 1 n + 1 ( n A n + a n + 1 ) A n + 1 A n = n A n n + 1 + a n + 1 n + 1 A n = a n + 1 A n n + 1 \begin{aligned} A_n & = \frac 1n \left(a_1+a_2+a_3+\cdots + a_n \right) \\ A_{n+1} & = \frac 1{n+1} \left(a_1+a_2+a_3+\cdots + a_n + a_{n+1} \right) \\ & = \frac 1{n+1}\left(nA_n + a_{n+1} \right) \\ A_{n+1} - A_n & = \frac {nA_n}{n+1} + \frac {a_{n+1}}{n+1} - A_n \\ & = \frac {a_{n+1}-A_n}{n+1} \end{aligned}

L = lim n n ( A n + 1 A n ) = lim n n ( a n + 1 A n ) n + 1 Dividing up and down by n = lim n a n + 1 A n n + 1 n Since a n < 1 n , A n < 1 = 0 \begin{aligned} \implies L & = \lim_{n \to \infty} \sqrt n \left(A_{n+1}-A_n\right) \\ & = \lim_{n \to \infty} \frac {\sqrt n \left(a_{n+1}-A_n\right)}{n+1} & \small \color{#3D99F6} \text{Dividing up and down by }\sqrt n \\ & = \lim_{n \to \infty} \frac {a_{n+1}-A_n}{\sqrt n+ \frac 1{\sqrt n}} & \small \color{#3D99F6} \text{Since }|a_n| < 1 \ \forall n, |A_n| < 1 \\ & = \boxed{0} \end{aligned}

The second last line might need a little explanation from the given info that a n + 1 < 1 |a_{n+1}|<1 and A n > 0 A_n\gt 0 so that a n + 1 A n < 1 a_{n+1}-A_n \lt 1 so that the numerator is bounded above while the denominator tends to \infty . Just a little explanation, else it's great

Aditya Narayan Sharma - 4 years, 1 month ago

Log in to reply

Thanks, I have added a note.

Chew-Seong Cheong - 4 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...