An algebra problem by Lucas Nascimento

Algebra Level 2

[ 2 ( 3 + 1 ) ( 3 2 + 1 ) ( 3 4 + 1 ) ( 3 8 + 1 ) ( 3 128 + 1 ) + 1 ] 1 / 128 = ? \left[2(3+1)(3^2+1)(3^4+1)(3^8+1)\cdots(3^{128}+1)+1\right]^{1/128}=\, ?


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Brian Moehring
Feb 8, 2017

Relevant wiki: Difference Of Squares

Write 2 = 3 1 2 = 3-1 so that

2 ( 3 + 1 ) ( 3 2 + 1 ) ( 3 4 + 1 ) ( 3 128 + 1 ) = ( 3 1 ) ( 3 + 1 ) ( 3 2 + 1 ) ( 3 4 + 1 ) ( 3 128 + 1 ) = ( 3 2 1 ) ( 3 2 + 1 ) ( 3 4 + 1 ) ( 3 128 + 1 ) = ( 3 4 1 ) ( 3 4 + 1 ) ( 3 128 + 1 ) = ( 3 128 1 ) ( 3 128 + 1 ) \ = 3 256 1 \begin{aligned} 2(3+1)(3^2+1)(3^4+1)\ldots(3^{128}+1) &= (3-1)(3+1)(3^2+1)(3^4+1)\ldots(3^{128}+1) \\ &= (3^2-1)(3^2+1)(3^4+1)\ldots(3^{128}+1) \\ &= (3^4-1)(3^4+1)\ldots(3^{128}+1) \\ &\qquad \vdots \\ &= (3^{128}-1)(3^{128}+1) \\\ &= 3^{256}-1 \end{aligned}

Therefore, the entire expression simplifies to

[ ( 3 256 1 ) + 1 ] 1 / 128 = [ 3 256 ] 1 / 128 = 3 2 = 9 . \big[(3^{256}-1)+1\big]^{1/128} = \big[3^{256}\big]^{1/128} = 3^2 = \boxed{9}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...