So Many Logs!

Algebra Level 4

6 log 5 x log 3 ( x 5 ) 5 log 6 6 x log 3 ( x 3 ) = 6 log 5 5 x 5 log 6 x \large { 6 }^{ \log _{ 5 }{ x } }\log _{ 3 }( { x }^{ 5 } ) -{ 5 }^{ \log _{ 6 }{ 6x } }\log _{ 3 }{ \left( \dfrac { x }{ 3 }\right) } ={ 6 }^{ \log _{ 5 }{ 5x } }-{ 5 }^{ \log _{ 6 }{ x } }

If the sum of the solutions to the equation above is equal to a b c + d , \large { a }^{ \frac { b }{ c } }+d,

where a , b , c a, b, c and d d are all positive integers with b b and c c are coprime, what is the smallest possible value of a b c + d abc+d ?


The answer is 91.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ludho Madrid
Apr 28, 2016

Relevant wiki: Logarithmic Functions - Problem Solving - Hard

Thus a b c + d = 90 + 1 = 91 abc+d=90+1=91

Use L A T E X L_{A}T_{E}X soon.

A Former Brilliant Member - 5 years, 1 month ago

Nice little problem. I do think though that you should specify that a, b, c, d are positive integers; otherwise the answer is actually 4.737192819... = 3.73719281 9 1 1 + 1 4.737192819... = 3.737192819^ \frac {1}{1} + 1 .

Sridev Humphreys - 5 years, 1 month ago

Log in to reply

Fixed it. Thanks!

Ludho Madrid - 5 years, 1 month ago

Log in to reply

Wow! That was quick!

Sridev Humphreys - 5 years, 1 month ago
Sam Bealing
May 2, 2016

Let y = log ( x ) y=\log{(x)} where l o g log refers to the natural logarithm. The expression is equivalent to:

( 6 y log ( y ) ) ( 5 y log ( 3 ) ) ( 5 ( y log ( 6 ) + 1 ) ) ( y log ( 3 ) 1 ) = 6 ( y log ( 5 ) + 1 ) 5 y log ( 6 ) \left(6^{\frac{y}{\log{ \left(y \right ) }}} \right ) \left( \frac{5y}{\log{ \left(3 \right ) }} \right ) - \left(5^{ \left(\frac{y}{\log{ \left(6 \right ) }}+1 \right ) } \right ) \left(\frac{y}{\log{ \left(3 \right ) }}-1 \right ) =6^{ \left(\frac{y}{\log{ \left(5 \right ) }}+1 \right ) }-5^{\frac{y}{\log{ \left(6 \right ) }}}

6 y log ( 5 ) ( 5 y log ( 3 ) 6 ) = 5 y log ( 6 ) ( 5 y log ( 3 ) 6 ) 6^{\frac{y}{\log{ \left ( 5 \right ) }}} \left ( \frac{5y}{\log{ \left ( 3 \right ) }}-6 \right ) = 5^{\frac{y}{\log{ \left ( 6 \right ) }}} \left ( \frac{5y}{\log{ \left ( 3 \right ) }}-6 \right )

( 6 y log ( 5 ) 5 y log ( 6 ) ) ( 5 y log ( 3 ) 6 ) = 0 \left (6^{\frac{y}{\log{ \left ( 5 \right ) }}}-5^{\frac{y}{\log{ \left ( 6 \right ) }}} \right) \left ( \frac{5y}{\log{ \left ( 3 \right ) }}-6 \right ) =0

( 6 y log ( 5 ) 5 y log ( 6 ) ) = 0 o r ( 5 y log ( 3 ) 6 ) = 0 \left (6^{\frac{y}{\log{ \left ( 5 \right ) }}}-5^{\frac{y}{\log{ \left ( 6 \right ) }}} \right) =0 \: \mathit{ or } \: \left ( \frac{5y}{\log{ \left ( 3 \right ) }}-6 \right ) =0

( 5 y log ( 3 ) 6 ) = 0 y = 6 5 log ( 3 ) = log ( 3 6 5 ) \left ( \frac{5y}{\log{ \left ( 3 \right ) }}-6 \right ) =0 \Rightarrow y=\frac{6}{5} \log \left( 3 \right )=\log \left( 3^{\frac{6}{5}} \right )

6 y log ( 5 ) 5 y log ( 6 ) = 0 6 y log ( 5 ) = 5 y log ( 6 ) y log ( 5 ) log ( 6 ) = y log ( 6 ) log ( 5 ) 6^{\frac{y}{\log{ \left ( 5 \right ) }}} - 5^{\frac{y}{\log{ \left ( 6 \right ) }}}=0 \Rightarrow 6^{\frac{y}{\log{ \left ( 5 \right ) }}} = 5^{\frac{y}{\log{ \left ( 6 \right ) }}} \Rightarrow \frac{y}{\log \left(5 \right )} \log \left(6 \right )=\frac{y}{\log \left(6 \right )} \log \left(5 \right )

log 2 ( 6 ) y = log 2 ( 5 ) y y = 0 \cdots \Rightarrow \log^2 \left (6 \right ) y=\log^2 \left (5 \right )y \Rightarrow y=0

y = 0 , y = log ( 3 6 5 ) x = 1 , x = 3 6 5 y=0,y=\log \left( 3^{\frac{6}{5}} \right ) \Rightarrow x=1,x=3^{\frac{6}{5}}

3 6 5 + 1 = a b c + d a = 3 , b = 6 , c = 5 , d = 1 3^{\frac{6}{5}}+1=a^{\frac{b}{c}}+d \Rightarrow a=3,b=6,c=5,d=1

a b c + d = 3 × 6 × 5 + 1 = 91 abc+d=3 \times 6 \times 5 +1=\boxed{\boxed{91}}

Note: I have used:

log a ( b ) = log ( b ) log ( a ) \log_{a} \left (b \right)=\frac{\log \left(b \right )}{\log \left (a \right )}

Moderator note:

Good clear explanation.

Be careful with the way you write up a solution, especially if you're not adding any lines of explanation. You do not want people to be questioning "Why must we only have 5 y log 3 6 = 0 \frac{5y}{\log 3 } - 6 = 0 ?", and then several lines later mention that "Oh, we could also have 6 A = 5 B 6 ^ A = 5 ^ B ". It is best to convince your reader that you're aware of what you're doing, instead of making them second guess what you wrote. It is cleaner to just present the factorized version and use the zero product property directly.

Calvin Lin Staff - 5 years, 1 month ago

Log in to reply

Thanks for the feedback, think I have made improvements.

Sam Bealing - 5 years, 1 month ago

Sir, do you think this question deserves level 5?

abhishekrocks sahoo - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...