Rules of logarithm can make a big change

Calculus Level 5

log x 1 / x a = 1 + log x log m a a \Large \log_{x^{1/x}} a = 1 + \log_{x^{\log_m a}} a

In the above equation, the first logarithm has base x 1 / x x^{1/x} , and the second logarithm has base x x raised to the power of log m a \log_m a .

Let m , a m,a be real numbers where m > 0 , a > 1 m > 0, a > 1 , such that the equation above has exactly one real solution for x x ; suppose that this solution is x = n x = n . Let

P = ( m n + n 2 ) 3 m 3 n 3 n 6 3 n 2 ( m + n ) \large{ P = \frac{(mn + n^2)^3 - m^3n^3 - n^6}{3 n^2 (m+n)} }

Compute the value of 1 0 3 a P \left\lfloor 10^3 \cdot a^P \right\rfloor .


The answer is 15154.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mamunur Rashid
Jul 31, 2016

The identity log p q = 1 log q p applies to the given eqation. {\text{The identity }}{\log _p}q{\text{ }} = {\text{ }}\frac{1}{{{{\log }_q}p}}{\text{ applies to the given eqation}}{\text{.}} log x 1 / x ( a ) = 1 + log x log m a ( a ) 1 log a ( x 1 / x ) = 1 + 1 log a ( x log m ( a ) ) 1 1 x log a ( x ) = 1 + 1 log m ( a ) log a ( x ) {\log _{{x^{1/x}}}}(a) = 1 + {\log _{{x^{{{\log }_m}a}}}}(a){\text{ }} \Rightarrow \frac{1}{{{{\log }_a}({x^{1/x}})}} = 1 + \frac{1}{{\mathop {\log }\nolimits_a ({x^{{{\log }_m}(a)}})}}{\text{ }} \Rightarrow \frac{1}{{\tfrac{1}{x}\mathop {\log }\nolimits_a (x)}} = 1 + \frac{1}{{\mathop {\log }\nolimits_m (a)\mathop {\log }\nolimits_a (x)}} x = log a ( x ) + log a ( m ) \Rightarrow x = {\log _a}(x) + {\log _a}(m) x = log a ( m x ) a x = m x \Rightarrow x = {\log _a}(mx){\text{ }} \Rightarrow {\text{ }}\boxed{{a^x} = mx} This can be interpreted as the intersection between curve y = a x and line y = m x . {\text{This can be interpreted as the intersection between curve }}y = {a^x}{\text{ and line }}y = mx. Given m > 0 and a > 1 so, one solution is only possible when {\text{Given }}m > 0{\text{ and }}a > 1{\text{ so, one solution is only possible when}} line y = m x is tangent to the curve y = a x at x = n . {\text{line }}y = mx{\text{ is tangent to the curve }}y = {a^x}{\text{ at }}x = n. For y = a x , d y d x = a x ln a {\text{For }}y = {a^x},\frac{{dy}}{{dx}} = {a^x}\ln a At x = n , a n = m n . . . . . . . . . ( 1 ) and ( d y d x ) x = n = m = a n ln a . . . . . . . . . ( 2 ) {\text{At }}x = n,{\text{ }}{a^n} = mn.........(1){\text{ and }}{\left( {\frac{{dy}}{{dx}}} \right)_{x = n}} = m = {a^n}\ln a.........(2) ( 1 ) and (2) m n ln a = m ln a = 1 n a = e 1 n and m = ( e 1 n ) n ln ( e 1 n ) m = e n (1){\text{ and (2) }} \Rightarrow {\text{ }}mn\ln a = m{\text{ }} \Rightarrow \ln a = \frac{1}{n} \Rightarrow \boxed{a = {e^{\frac{1}{n}}}}{\text{ and }}m = {\left( {{e^{\frac{1}{n}}}} \right)^n}\ln \left( {{e^{\frac{1}{n}}}} \right) \Rightarrow \boxed{m = \frac{e}{n}} Now, substituting these results for m and a into the given expression, {\text{Now, substituting these results for }}m{\text{ and }}a{\text{ into the given expression,}} 10 3 a ( m n + n 2 ) 3 m 3 n 3 n 6 3 n 2 ( m + n ) = 10 3 a m 3 n 3 + n 6 + 3 n 4 m ( m + n ) m 3 n 3 n 6 3 n 2 ( m + n ) = 10 3 a n 2 m = 10 3 ( e 1 n ) n 2 × e n \left\lfloor {{{10}^3}{a^{\frac{{{{(mn + {n^2})}^3} - {m^3}{n^3} - {n^6}}}{{3{n^2}(m + n)}}}}} \right\rfloor {\text{ }} = {\text{ }}\left\lfloor {{{10}^3}{a^{\frac{{{m^3}{n^3} + {n^6} + 3{n^4}m(m + n) - {m^3}{n^3} - {n^6}}}{{3{n^2}(m + n)}}}}} \right\rfloor {\text{ = }}\;\left\lfloor {{{10}^3}{a^{{n^2}m}}} \right\rfloor {\text{ }}\; = \left\lfloor {{{10}^3}{{\left( {{e^{\frac{1}{n}}}} \right)}^{{n^2} \times \frac{e}{n}}}} \right\rfloor {\text{ }} = 1000 e e = 15154 = {\text{ }}\left\lfloor {1000{e^e}} \right\rfloor {\text{ }} = {\text{ }}\boxed{\boxed{15154}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...