An algebra problem by Manish Mayank

Algebra Level 1

If x y \frac{x}{y} + y x \frac{y}{x} = -1, Find the value of x 3 x^{3} - y 3 y^{3}


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Edmund Letaba
Jul 1, 2014

x y + y x = 1 x y [ x y + y x ] = 1 ( x y ) x 2 + y 2 = x y x 2 + x y + y 2 = 0 u s i n g q u a d r a t i c e q u a t i o n , x = y ± y 2 4 y 2 2 x = y ± y 3 i 2 s u b s t i t u t e t o t h e o r i g i n a l e q u a t i o n , x y + y x = 1 y + y 3 i 2 y + 2 y y + y 3 i = 1 2 y ( y + y 3 i ) [ y + y 3 i 2 y + 2 y y + y 3 i ] = ( 1 ) 2 y ( y + y 3 i ) s i m p l i f y t h e e q u a t i o n , w e c a n g e t t h e v a l u e o f y , y = 3 i + 1 2 t h e n s u b s t i t u t e t h e v a l u e o f y t o t h e e q u a t i o n o f t h e x , x = y + y 3 i 2 x = 3 i + 1 2 + 3 i + 1 2 ( 3 i ) 2 x = 1 t h e r e f o r e t h e v a l u e o f x a n d y i s 1 & 3 i + 1 2 s u b s t i t u t e t h e v a l u e s t o t h e e q u a t i o n x 3 y 3 = ? ( 1 ) 3 ( 3 i + 1 2 ) 3 = 0 t h e a n s w e r i s 0. \frac { x }{ y } +\frac { y }{ x } =-1\\ xy\left[ \frac { x }{ y } +\frac { y }{ x } \right] =-1\quad (xy)\\ { x }^{ 2 }+{ y }^{ 2 }=-xy\\ { x }^{ 2 }+xy+{ y }^{ 2 }=0\\ \\ using\quad quadratic\quad equation,\\ \\ x=\frac { { -y }\pm \sqrt { { y }^{ 2 }-4{ y }^{ 2 } } }{ 2 } \\ x=\frac { { -y }\pm y\sqrt { 3 } i }{ 2 } \\ \\ substitute\quad to\quad the\quad original\quad equation,\\ \frac { x }{ y } +\frac { y }{ x } =-1\\ \frac { { -y }+y\sqrt { 3 } i }{ 2y } +\frac { 2y }{ { -y }+y\sqrt { 3 } i } =-1\\ 2y\left( { -y }+y\sqrt { 3 } i \right) \left[ \frac { { -y }+y\sqrt { 3 } i }{ 2y } +\frac { 2y }{ { -y }+y\sqrt { 3 } i } \right] =(-1)\quad 2y\left( { -y }+y\sqrt { 3 } i \right) \\ simplify\quad the\quad equation,\quad we\quad can\quad get\quad the\quad value\quad of\quad y,\\ y=\frac { \sqrt { 3 } i+1 }{ 2 } \\ then\quad substitute\quad the\quad value\quad of\quad y\quad to\quad the\quad equation\quad of\quad the\quad x,\\ x=\frac { { -y }+y\sqrt { 3 } i }{ 2 } \\ x=\frac { -\frac { \sqrt { 3 } i+1 }{ 2 } +\frac { \sqrt { 3 } i+1 }{ 2 } (\sqrt { 3 } i) }{ 2 } \\ x=-1\\ \\ therefore\quad the\quad value\quad of\quad x\quad and\quad y\quad is\quad -1\quad \& \quad \frac { \sqrt { 3 } i+1 }{ 2 } \\ substitute\quad the\quad values\quad to\quad the\quad equation\quad { x }^{ 3 }-{ y }^{ 3 }\quad =\quad ?\\ { (-1) }^{ 3 }-{ \left( \frac { \sqrt { 3 } i+1 }{ 2 } \right) }^{ 3 }=\quad 0\\ \\ the\quad answer\quad is\quad 0.

Don't need to do that. x 3 y 3 = ( x y ) ( x 2 + y 2 + x y ) x^3 - y^3 = (x - y)(x^2 + y^2 + xy) . Since we know that x 2 + y 2 + x y = 0 x^2 + y^2 + xy = 0 x 3 y 3 = 0 x^3 - y^3 = 0 .

Sharky Kesa - 6 years, 11 months ago

this is what i did :)

joram otero - 6 years, 11 months ago

There is a short and easy solution to this without using the quadratic formula and complex numbers.

We can use the fact that x 3 y 3 = ( x y ) ( x 2 + y 2 x y ) x^3 - y^3 = (x-y)(x^2+y^2-xy)

From the question x y + y x = 1 \frac{x}{y} + \frac{y}{x} = -1 , we get that

x 2 + y 2 = x y x 2 + y 2 x y = 0 x^2 +y^2 = -xy \Rightarrow x^2 +y^2 -xy = 0

Substituting this in our identity above , we get x 3 y 3 = 0 x^3-y^3 = 0

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...