An algebra problem by Martin Nikolov

Algebra Level 2

Evaluate : 4 + 7 4 7 2 \text{ } \sqrt { 4+\sqrt { 7 } } -\sqrt { 4-\sqrt { 7 } } -\sqrt { 2 }


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Sujoy Roy
Nov 23, 2014

4 + 7 4 7 2 \sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}

= 1 2 ( 8 + 2 7 8 2 7 2 ) =\frac{1}{\sqrt{2}}(\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}-2)

= 1 2 [ ( 7 + 1 ) ( 7 1 ) 2 ] = 0 =\frac{1}{\sqrt{2}} [(\sqrt{7}+1)-(\sqrt{7}-1)-2]=\boxed{0}

how did u get that 3rd step

Aditya Todkar - 6 years, 6 months ago

Log in to reply

By making Perfect Square

Ishwer Aggarwal - 6 years, 6 months ago

ur is wrong

Adiveppa Ramapuri - 6 years, 6 months ago

Log in to reply

Excuse me? What do you mean.

Trevor Arashiro - 6 years, 5 months ago
Misha Ivkov
Nov 28, 2014

First let S = 4 + 7 4 7 S=\sqrt{4+\sqrt7}-\sqrt{4-\sqrt7} , so S 2 = 4 + 7 + 4 7 2 4 2 7 = 2 S^2=4+\sqrt7+4-\sqrt7-2\sqrt{4^2-7}=2 . Therefore, S = 2 S=\sqrt2 , so the total sum is 2 2 = 0 \sqrt2-\sqrt2=0

Luv your solution

Athiyaman Nallathambi - 5 years, 10 months ago
Sandeep Rathod
Nov 28, 2014

4 + 7 = 7 2 + 1 2 + 2. 7 . 1 2 . 2 \sqrt{4 + \sqrt{7}} = \sqrt{\frac{7}{2} + \frac{1}{2} + 2.\frac{\sqrt{7}.1}{\sqrt{2}.\sqrt{2}}}

given expression

= ( 7 2 + 1 2 ) 2 ( 7 2 1 2 ) 2 2 = \sqrt{ (\sqrt{\frac{7}{2}} + \sqrt{\frac{1}{2}})^{2}} - \sqrt{ (\sqrt{\frac{7}{2}} - \sqrt{\frac{1}{2}})^{2}} - \sqrt{2}

= 2 2 2 = \frac{2}{\sqrt{2}} - \sqrt{2}

Enrique Leon
Nov 27, 2014

x= √(4+√(7)) - √(4-√(7)) - √(2) ⇒
( x+√(2))² = ( √(4+√(7)) - √4-√7)) )² ⇒
x²+2√(2)x+2=4+√ (7)-2√(16-7) +4-√(7) ⇒
x²+2√(2)x+2 -2=4-2√(9)+4 -2 x²+2√(2)x = 6 - 2(±3)
1.) x² +2√(2)x = 6-(6)
2.) x² + 2√(2)x = 6+(6) 1.) x = -2√(2) or 0 * * 2.) x = -(2)± √(14)




I got four solutions but I pick the only integer I got. sorry for the weird confusions.

Sarvesh Nalawade
Nov 27, 2014

\sqrt(4+\sqrt(7))-\sqrt(4-\sqrt(7))-\sqrt(2) =(\frac{1}{\sqrt(2)})\times \sqrt(7 +2times (\sqrt(7))+1)-\sqrt(7+1-2times (\sqrt(7)))-2

Abhishek Ghosh
Dec 30, 2014

Anna Anant
Dec 21, 2014

ans = 0 sqrt(4+sqrt(7)) = (sqrt(7) + 1)/sqrt(2) sqrt( 4 - sqrt(7) ) = (sqrt(7) - 1)/sqrt(2) sqrt( 4 + sqrt(7) ) - sqrt( 4 - sqrt(7) ) = sqrt(2) sqrt(2) - sqrt(2) = 0

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...