An algebra problem by A Former Brilliant Member

Algebra Level 1

If x + y = 6 x+y=6 and x 2 + y 2 = 27 x^2+y^2=27 , find x y xy .


The answer is 4.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

We know that

( x + y ) 2 = x 2 + 2 x y + y 2 (x+y)^2=x^2+2xy+y^2

Substituting, we have

6 2 = 27 + 2 x y 6^2=27+2xy

36 = 27 + 2 x y 36=27+2xy

36 27 = 2 x y 36-27=2xy

9 = 2 x y 9=2xy

9 2 = x y \dfrac{9}{2}=xy

4.5 = x y \boxed{4.5=xy}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...