Can you find x?

Algebra Level 2

Find x x .

4 + 10 + 16 + . . . + x = 1344 4+10+16+...+x=1344


The answer is 124.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

The series of numbers is an arithmetic progression . The first step is to find the number of terms, n n , from the formula

S = n 2 [ 2 a 1 + ( n 1 ) d ] S=\dfrac{n}{2}[2a_1+(n-1)d] \large \implies 1344 = n 2 [ 2 ( 4 ) + ( n 1 ) ( 6 ) ] 1344=\dfrac{n}{2}[2(4)+(n-1)(6)] \large \implies 2688 = n ( 8 + 6 n 6 ) 2688=n(8+6n-6) \large \implies 2688 = 2 n + 6 n 2 2688=2n+6n^2

Now use quadratic formula to solve for n n , we get, n = 21 n=21 .

Now solve for x x using the formula

S = n 2 ( a 1 + a n ) S=\dfrac{n}{2}(a_1+a_n) \large \implies 1344 = 21 2 ( 4 + x ) 1344=\dfrac{21}{2}(4+x) \large \implies 2688 21 = 4 + x \dfrac{2688}{21}=4+x \large \implies x = 124 \color{#D61F06}\large \boxed{x=124}

Mohammad Khaza
Jul 13, 2017

suppose, a=4 and d=6

so, [ n 2 ( 2 × a ) + ( n 1 ) d ] [ \frac {n}{2} ( 2 \times a ) + ( n-1 ) d] = 1344 1344

or, 3 n 2 + n 3n^2 + n = 1344 1344 ...................(calculator)

or, n = 21 n =21 .....................(negative value is not applicable)

so, 21st sequence is = a + ( n 1 ) d a+ (n-1)d

                              = 124

n 2 ( 2 a + ( n 1 ) 6 ) = 1344 n ( 4 + ( n 1 ) 3 ) = 1344 n ( 4 + 3 n 3 ) = 1344 3 n 2 + n = 1344 3 n 2 + n 1344 = 0 \frac { n }{ 2 } (2a+(n-1)6)=1344\\ n(4+(n-1)3)=1344\\ n(4+3n-3)=1344\\ 3{ n }^{ 2 }+n=1344\\ 3{ n }^{ 2 }+n-1344=0

n 1 , n 2 = b ± b 2 4 a c 2 a n 1 , n 2 = 1 ± 1 2 4 3 ( 1344 ) 6 n 1 , n 2 = 1 ± 1 + 5376 6 n 1 , n 2 = 1 ± 127 6 n 1 = 1 + 127 6 = 126 6 = 21 n 2 = 1 127 6 = 128 6 = 21 1 3 { n }_{ 1 },{ n }_{ 2 }=\frac { -b\pm \sqrt { { b }^{ 2 }-4ac } }{ 2a } \\ { n }_{ 1 },{ n }_{ 2 }=\frac { -1\pm \sqrt { { 1 }^{ 2 }-4\cdot 3\cdot (-1344) } }{ 6 } \\ { n }_{ 1 },{ n }_{ 2 }=\frac { -1\pm \sqrt { 1+5376 } }{ 6 } \\ { n }_{ 1 },{ n }_{ 2 }=\frac { -1\pm 127 }{ 6 } \\ { n }_{ 1 }=\frac { -1+127 }{ 6 } =\frac { 126 }{ 6 } =21\\ { n }_{ 2 }=\frac { -1-127 }{ 6 } =-\frac { 128 }{ 6 } =-21\frac { 1 }{ 3 }

So the value of n n is 21 21 .

U 21 = a + ( 21 1 ) b U 21 = 4 + 20 6 U 21 = 124 { U }_{ 21 }=a+(21-1)b\\ { U }_{ 21 }=4+20\cdot 6\\ { U }_{ 21 }=124 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...