Log!

Geometry Level 2

( log cos x sin 2 x ) ( log cos 2 x sin x ) = 4 \large \left( \log_{\cos x} \sin^2 x \right) \left( \log_{\cos^2 x} \sin x \right) = 4

If x = arcsin ( y 1 2 ) + 2 k π x = \arcsin\left( \dfrac{\sqrt {\color{#D61F06}{y}} - 1}2 \right) + 2k \pi for any integer k k , find y \color{#D61F06}{y} .


Inspired by IME.


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishabh Jain
Feb 5, 2016

Given equation can be rewritten as: ( log cos x sin x ) ( log cos x sin x ) = 4 \left( \log_{\cos x} \sin x \right) \left( \log_{\cos x} \sin x \right) = 4 ( log cos x sin x ) 2 = 4 \Rightarrow (\log_{\cos x} \sin x)^2=4 log cos x sin x = ± 2 \Rightarrow \log_{\cos x} \sin x =\pm2 sin x = cos 2 x , 1 cos 2 x \Rightarrow \sin x = \cos^2 x , \dfrac{1}{\cos^2 x} Rejecting the second one since it will give sinx =cosx =1while we know base of log cannot be 1 sin x = cos 2 x = 1 sin 2 x \therefore \sin x =\cos^2 x=1-\sin^2 x This is a quadratic in sinx which can be easily solved to find sin x = 1 + 5 2 \sin x=\dfrac{-1 + \sqrt 5 }{2} Rejecting the negative sign since sinx cannot be less than -1. x = arcsin 5 1 2 + 2 k π x = \arcsin \dfrac{\sqrt 5 - 1}2 + 2k \pi y = 5 \Large y=\boxed5

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...