tan 7 π tan 7 2 π tan 7 3 π = A Find A .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Nice solution chewing
Since sin 7 x = = I m [ ( cos x + i sin x ) 7 ] = 7 cos 6 x sin x − 3 5 cos 4 x sin 3 x + 2 1 cos 2 x sin 5 x − sin 7 x sin 7 x [ 7 cot 6 x − 3 5 cot 4 x + 2 1 cot 2 x − 1 ] = sin 7 x F ( cot 2 x ) where F ( X ) is the polynomial F ( X ) = 7 X 3 − 3 5 X 2 + 2 1 X − 1 we see that the roots of F ( X ) are cot 2 7 j π for 1 ≤ j ≤ 3 , and hence cot 2 7 π cot 2 7 2 π cot 2 7 3 π = 7 1 . Since all three angles are acute, it follows that tan 7 π tan 7 2 π tan 7 3 π = 7 , making the answer 7 .
Nice solution👌
Problem Loading...
Note Loading...
Set Loading...
tan 7 π tan 7 2 π tan 7 3 π = cos 7 π cos 7 2 π cos 7 3 π sin 7 π sin 7 2 π sin 7 3 π = B A
Using the identity:
k = 1 ∏ n − 1 sin ( n k π ) ⟹ k = 1 ∏ 6 sin ( 7 k π ) sin 7 π sin 7 2 π sin 7 3 π sin 7 4 π sin 7 5 π sin 7 6 π sin 7 π sin 7 2 π sin 7 3 π sin 7 3 π sin 7 2 π sin 7 π ⟹ A 2 A = 2 n − 1 n = 2 6 7 = 2 6 7 = 2 6 7 = 2 6 7 = 2 3 7 As sin ( π − x ) = sin x
B = cos 7 π cos 7 2 π cos 7 3 π = cos 7 π cos 7 2 π ( − cos 7 4 π ) = − sin 7 π sin 7 π cos 7 π cos 7 2 π cos 7 4 π = − 2 sin 7 π sin 7 2 π cos 7 2 π cos 7 4 π = − 2 2 sin 7 π sin 7 4 π cos 7 4 π = − 2 3 sin 7 π sin 7 8 π = − 2 3 sin 7 π − sin 7 π = 2 3 1 As cos ( π − x ) = − cos x
Therefore,
tan 7 π tan 7 2 π tan 7 3 π = B A = 2 3 1 2 3 7 = 7
⟹ A = 7 .