Is Drawing A Regular Septagon Necessary?

Geometry Level 1

tan π 7 tan 2 π 7 tan 3 π 7 = A \large \tan\frac{\pi}{7}\tan\frac{2\pi}{7}\tan\frac{3\pi}{7}= \sqrt{A} Find A A .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 16, 2016

tan π 7 tan 2 π 7 tan 3 π 7 = sin π 7 sin 2 π 7 sin 3 π 7 cos π 7 cos 2 π 7 cos 3 π 7 = A B \begin{aligned} \tan \frac \pi 7 \tan \frac {2 \pi}7 \tan \frac {3 \pi}7 & = \frac {\sin \frac \pi 7 \sin \frac {2 \pi}7 \sin \frac {3 \pi}7}{\cos \frac \pi 7 \cos \frac {2 \pi}7 \cos \frac {3 \pi}7} = \frac AB \end{aligned}

Using the identity:

k = 1 n 1 sin ( k π n ) = n 2 n 1 k = 1 6 sin ( k π 7 ) = 7 2 6 sin π 7 sin 2 π 7 sin 3 π 7 sin 4 π 7 sin 5 π 7 sin 6 π 7 = 7 2 6 As sin ( π x ) = sin x sin π 7 sin 2 π 7 sin 3 π 7 sin 3 π 7 sin 2 π 7 sin π 7 = 7 2 6 A 2 = 7 2 6 A = 7 2 3 \begin{aligned} \prod_{k=1}^{n-1} \sin \left(\frac {k \pi}n \right) & = \frac n {2^{n-1}} \\ \implies \prod_{k=1}^6 \sin \left(\frac {k \pi}7 \right) & = \frac 7 {2^6} \\ \sin \frac \pi 7 \sin \frac {2 \pi}7 \sin \frac {3 \pi}7 \color{#3D99F6}{ \sin \frac {4\pi}7 \sin \frac {5 \pi}7 \sin \frac {6 \pi}7} & = \frac 7 {2^6} & \small \color{#3D99F6}{\text{As }\sin (\pi - x) = \sin x} \\ \sin \frac \pi 7 \sin \frac {2 \pi}7 \sin \frac {3 \pi}7 \color{#3D99F6}{\sin \frac {3\pi}7 \sin \frac {2 \pi}7 \sin \frac \pi 7} & = \frac 7 {2^6} \\ \implies A^2 & = \frac 7 {2^6} \\ A & = \frac {\sqrt 7}{2^3} \end{aligned}

B = cos π 7 cos 2 π 7 cos 3 π 7 As cos ( π x ) = cos x = cos π 7 cos 2 π 7 ( cos 4 π 7 ) = sin π 7 cos π 7 cos 2 π 7 cos 4 π 7 sin π 7 = sin 2 π 7 cos 2 π 7 cos 4 π 7 2 sin π 7 = sin 4 π 7 cos 4 π 7 2 2 sin π 7 = sin 8 π 7 2 3 sin π 7 = sin π 7 2 3 sin π 7 = 1 2 3 \begin{aligned} B & = \cos \frac \pi 7 \cos \frac {2 \pi}7 \color{#3D99F6}{ \cos \frac {3 \pi}7} & \small \color{#3D99F6}{\text{As }\cos (\pi - x) = -\cos x} \\ & = \cos \frac \pi 7 \cos \frac {2 \pi}7 \color{#3D99F6}{\left(- \cos \frac {4 \pi}7\right)} \\ & = - \frac {{\color{#3D99F6}{\sin \frac \pi 7}} \cos \frac \pi 7 \cos \frac {2 \pi}7 \cos \frac {4 \pi}7}{\color{#3D99F6}{\sin \frac \pi 7}} \\ & = - \frac {\sin \frac {2 \pi}7 \cos \frac {2 \pi}7 \cos \frac {4 \pi}7}{2 \sin \frac \pi 7} \\ & = - \frac {\sin \frac {4 \pi}7 \cos \frac {4 \pi}7}{2^2 \sin \frac \pi 7} \\ & = - \frac {\sin \frac {8 \pi}7}{2^3 \sin \frac \pi 7} \\ & = - \frac {-\sin \frac \pi 7}{2^3 \sin \frac \pi 7} \\ & = \frac 1{2^3} \end{aligned}

Therefore,

tan π 7 tan 2 π 7 tan 3 π 7 = A B = 7 2 3 1 2 3 = 7 \begin{aligned} \tan \frac \pi 7 \tan \frac {2 \pi}7 \tan \frac {3 \pi}7 & = \frac AB = \frac {\frac {\sqrt 7}{2^3}}{\frac 1{2^3}} = \sqrt 7 \end{aligned}

A = 7 \implies A = \boxed{7} .

Nice solution chewing

Gaurav Agarwal - 4 years, 7 months ago
Mark Hennings
Oct 19, 2016

Since sin 7 x = I m [ ( cos x + i sin x ) 7 ] = 7 cos 6 x sin x 35 cos 4 x sin 3 x + 21 cos 2 x sin 5 x sin 7 x = sin 7 x [ 7 cot 6 x 35 cot 4 x + 21 cot 2 x 1 ] = sin 7 x F ( cot 2 x ) \begin{array}{rcl} \sin7x & = & \displaystyle \mathfrak{Im}\big[(\cos x + i\sin x)^7\big] \; = \; 7\cos^6x \sin x - 35\cos^4x \sin^3x + 21\cos^2x\sin^5x - \sin^7x \\ & = & \sin^7x\big[7\cot^6x - 35\cot^4x + 21\cot^2x - 1\big] \; = \; \sin^7xF(\cot^2x) \end{array} where F ( X ) F(X) is the polynomial F ( X ) = 7 X 3 35 X 2 + 21 X 1 F(X) \; =\; 7X^3 - 35X^2 + 21X - 1 we see that the roots of F ( X ) F(X) are cot 2 j π 7 \cot^2\tfrac{j\pi}{7} for 1 j 3 1 \le j \le 3 , and hence cot 2 π 7 cot 2 2 π 7 cot 2 3 π 7 = 1 7 \cot^2\tfrac{\pi}{7} \cot^2\tfrac{2\pi}{7} \cot^2 \tfrac{3\pi}{7} = \tfrac17 . Since all three angles are acute, it follows that tan π 7 tan 2 π 7 tan 3 π 7 = 7 \tan\tfrac{\pi}{7} \tan\tfrac{2\pi}{7} \tan\tfrac{3\pi}{7} = \sqrt{7} , making the answer 7 \boxed{7} .

Nice solution👌

will jain - 4 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...