Trigonometric Tables Won't Help!

Geometry Level 4

sec 4 ( π 7 ) + sec 4 ( 2 π 7 ) + sec 4 ( 3 π 7 ) = ? \large \sec^4\left(\dfrac{\pi}{7}\right)+\sec^4\left(\dfrac{2\pi}{7}\right)+\sec^4\left(\dfrac{3\pi}{7}\right) = \, ?


The answer is 416.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Calvin Lin Staff
Nov 4, 2016

Using the chebyshev polynomial T 7 = 64 x 7 112 x 5 + 56 x 3 7 x T_7 = 64x^7 - 112x^5 + 56x^3 - 7x , the roots to T 7 ( x ) = 1 T_7 (x) = 1 are cos 2 n π 7 \cos \frac{ 2n \pi } { 7} .

Lets factor out ( x 1 ) (x-1) from T 7 ( x ) 1 T_7 (x) - 1 : T 7 ( x ) 1 = ( x 1 ) ( 64 x 6 + 64 x 5 48 x 4 48 x 3 + 8 x 2 + 8 x + 1 ) T_7 (x) - 1 = (x-1) (64x^6 + 64x^5 - 48x^4 - 48x^3 + 8x^2 + 8x + 1 ) .
The zeroes of the second factor are cos 2 π 7 , cos 4 π 7 , cos 6 π 7 , cos 8 π 7 , cos 10 π 7 , cos 12 π 7 \cos \frac{2\pi}{7}, \cos \frac{4\pi}{7}, \cos \frac{6\pi}{7}, \cos \frac{8\pi}{7}, \cos \frac{10\pi}{7}, \cos \frac{12\pi}{7} .

Taking the mapping x 1 x x \rightarrow \frac{1}{x} , the factor becomes x 6 + 8 x 5 + 8 x 4 48 x 3 48 x 2 + 64 x + 64 x^6 + 8x^5 + 8x^4 - 48x^3 - 48x^2 + 64x + 64 . The zeroes of this are sec 2 π 7 , sec 4 π 7 , sec 6 π 7 , sec 8 π 7 , sec 10 π 7 , sec 12 π 7 \sec \frac{2\pi}{7}, \sec \frac{4\pi}{7}, \sec \frac{6\pi}{7}, \sec \frac{8\pi}{7}, \sec \frac{10\pi}{7}, \sec \frac{12\pi}{7} .

Finally, we apply newton's identities and want to calculate P 4 P_4 .
P 1 = 8 P_1 = -8
P 2 = ( 8 ) P 1 8 × 2 = 48 P_2 = (-8) P_1 - 8 \times 2 = 48
P 3 = ( 8 ) P 2 8 P 1 + 48 × 3 = 176 P_3 = (-8) P_2 - 8 P_1 + 48 \times 3 = -176
P 4 = ( 8 ) P 3 8 P 2 + 48 P 1 ( 48 ) × 4 = 832 P_4 = (-8) P_3 - 8 P_2 + 48 P_1 - (-48) \times 4 = 832

Now, since sec π 7 = sec 8 π 7 = sec 6 p i 7 \sec \frac{ \pi}{7} = - \sec \frac{ 8 \pi } { 7} = - \sec \frac{ 6 pi } { 7 } ,
and sec 2 π 7 = sec 12 π 7 \sec \frac{ 2 \pi }{7} = \sec \frac{ 12 \pi }{ 7} ,
and sec 3 π 7 = sec 4 π 7 = sec 10 p i 7 \sec \frac{ 3 \pi } { 7} = - \sec \frac { 4 \pi } { 7} = - \sec \frac{ 10 pi } { 7 } ,

Hence we conclude that

sec 4 2 π 7 + sec 4 4 π 7 + sec 4 6 π 7 + sec 4 8 π 7 + sec 10 π 7 4 + sec 4 12 π 7 = 2 ( sec 4 π 7 + sec 4 2 π 7 + sec 4 3 π 7 ) \sec^4 \frac{2\pi}{7} + \sec^4 \frac{4\pi}{7} + \sec^4 \frac{6\pi}{7} + \sec^4 \frac{8\pi}{7} + \sec \frac{10\pi}{7}^4 + \sec^4 \frac{12\pi}{7} = 2 ( \sec^4 \frac{\pi}{7} + \sec^4 \frac{2\pi}{7} + \sec^4 \frac{3\pi}{7})

Hence, the expression is 832 2 = 416 \frac{ 832 } { 2 } = 416 .


Note: The solution could be simplified by making the observation about the duplicity of roots first. If so, we can conclude that the polynomial whose roots are cos π 7 , cos 2 π 7 , cos 3 π 7 \cos \frac{\pi}{7}, \cos \frac{2\pi}{7}, \cos \frac{3\pi}{7} is given by T 7 ( x ) 1 x 1 = 8 x 3 4 x 2 4 x + 1 \sqrt{ \frac{ T_7(x) - 1 } { x-1 } } = 8x^3 - 4x^2 - 4x + 1 , and then using x 1 x x \rightarrow \frac{1}{x} and newton identities accordingly. Give it a try!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...