An algebra problem by U Z

Algebra Level 4

Let R R be a set of nine distinct integers. Six of the elements of the set 2 , 3 , 4 , 6 , 9 and 14 . What is the number of possible values of the median of R R ?


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

David Vreken
Jun 12, 2020

The possible medians are the numbers between 3 3 and 9 9 inclusive (see below for some possible ways to do this), for a total of 7 \boxed{7} different possible values:

1 , 0 , 1 , 2 , 3 , 4 , 6 , 9 , 14 \color{#3D99F6}-1\color{#333333}, \color{#3D99F6}0\color{#333333}, \color{#3D99F6}1\color{#333333}, 2, \boxed{3}, 4, 6, 9, 14

0 , 1 , 2 , 3 , 4 , 6 , 9 , 14 , 15 \color{#3D99F6}0\color{#333333}, \color{#3D99F6}1\color{#333333}, 2, 3, \boxed{4}, 6, 9, 14, \color{#3D99F6}15\color{#333333}

1 , 2 , 3 , 4 , 5 , 6 , 9 , 14 , 15 \color{#3D99F6}1\color{#333333}, 2, 3, 4, \boxed{\color{#3D99F6}5\color{#333333}}, 6, 9, 14, \color{#3D99F6}15\color{#333333}

1 , 2 , 3 , 4 , 6 , 9 , 14 , 15 , 16 \color{#3D99F6}1\color{#333333}, 2, 3, 4, \boxed{6}, 9, 14, \color{#3D99F6}15\color{#333333}, \color{#3D99F6}16\color{#333333}

2 , 3 , 4 , 6 , 7 , 9 , 14 , 15 , 16 2, 3, 4, 6, \boxed{\color{#3D99F6}7\color{#333333}}, 9, 14, \color{#3D99F6}15\color{#333333}, \color{#3D99F6}16\color{#333333}

2 , 3 , 4 , 6 , 8 , 9 , 14 , 15 , 16 2, 3, 4, 6, \boxed{\color{#3D99F6}8\color{#333333}}, 9, 14, \color{#3D99F6}15\color{#333333}, \color{#3D99F6}16\color{#333333}

2 , 3 , 4 , 6 , 9 , 14 , 15 , 16 , 17 2, 3, 4, 6, \boxed{9}, 14, \color{#3D99F6}15\color{#333333}, \color{#3D99F6}16\color{#333333}, \color{#3D99F6}17\color{#333333}

Numbers less than 3 3 and greater than 9 9 cannot be the medians because we can only add three numbers to the list.

Thanks a lot, Sir! I understood my mistake!

Vinayak Srivastava - 1 year ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...