Triangle inequality

Geometry Level 4

Find the smallest number N N for which the following inequality holds in every triangle.

h a h b h c N a b c { h }_{ a }{ h }_{ b }{ h }_{ c }\le N\cdot abc

Approximate the value to two decimal places.


h a { h }_{ a } is the height that falls on the side a. The same is with h b { h }_{ b } and h c { h }_{ c }


The answer is 0.65.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Personal Data
Apr 16, 2015

Notice that h a a h b b h c c = sin α sin β sin γ \frac { { h }_{ a } }{ a } \cdot \frac { { h }_{ b } }{ b } \cdot\frac { { h }_{ c } }{ c }=\sin { \alpha } \cdot \sin { \beta } \cdot \sin { \gamma } .

Since sin α , sin β , sin γ > 0 \sin { \alpha } ,\sin { \beta } ,\sin { \gamma } >0 we can use the AM-GM inequality to get that sin α sin β sin γ ( sin α + sin β + sin γ 3 ) 3 \sin { \alpha } \cdot \sin { \beta } \cdot \sin { \gamma } \le { \left( \frac { \sin { \alpha } +\sin { \beta } +\sin { \gamma } }{ 3 } \right) }^{ 3 } .

Now since f ( x ) = sin x f\left( x \right) =\sin { x } is concave on the interval < 0 , π > \left< 0,\pi \right> we can use Jensen's inequality to conclude that: ( sin α + sin β + sin γ 3 ) 3 ( sin α + β + γ 3 ) 3 = ( sin π 3 ) 3 = 3 3 8 0.65 { \left( \frac { \sin { \alpha } +\sin { \beta } +\sin { \gamma } }{ 3 } \right) }^{ 3 }\le { \left( \sin { \frac { \alpha +\beta +\gamma }{ 3 } } \right) }^{ 3 }={ \left( \sin { \frac { \pi }{ 3 } } \right) }^{ 3 }=\frac { 3\sqrt { 3 } }{ 8 } \approx 0.65

Hence the answer is 0.65

Thanks for Soln....

Karan Shekhawat - 6 years, 1 month ago

Can you elaborate your 'notice' ? ;)

Vishal Yadav - 4 years, 2 months ago
Sarthak Singla
Sep 24, 2015

try taking an equilateral triangle to solve.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...