A nice identity can be used!

Geometry Level 3

Find the sum (in degrees) of all solutions of

cot x tan 2 x = 0 \large {\displaystyle \cot{x}-\tan{2x}=0}

for 0 x 360 ˚ 0\leq x\leq360˚ .


The answer is 1080.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

cot x tan 2 x = 0 cos x sin x sin 2 x cos 2 x = 0 cos 2 x cos x sin 2 x sin x = 0 cos ( 2 x + x ) = 0 cos 3 x = 0 3 x = 90 ˚ + 180 ˚ k , for k Z \cot x-\tan2x = 0 \\ \frac{\cos x}{\sin x}-\frac{\sin2x}{\cos2x} = 0 \\ \cos2x\cos x-\sin2x\sin x = 0 \\ \cos\left(2x+x\right) = 0 \\ \cos3x = 0 \\ 3x = 90\text{˚}+180\text{˚}k\mbox{, for }k\in\mathbb{Z}

which gives x = 30 ˚, 90 ˚, 150 ˚, 210 ˚, 270 ˚, 330 ˚ x=30\text{˚}\mbox{, }90\text{˚}\mbox{, }150\text{˚}\mbox{, }210\text{˚}\mbox{, }270\text{˚}\mbox{, }330\text{˚} , for 0 x 36 0 o 0\leq x\leq360^{\mbox{o}} .

Chew-Seong Cheong
Jul 26, 2015

cot x tan 2 x = 0 cot x = tan 2 x tan ( 9 0 x ) = tan 2 x tan ( 180 k + 9 0 x ) = tan ( 2 x ) [ for k = 0 , 1 , 2 , 3 , 4 , 5 ] 3 x = ( 180 k + 90 ) x = ( 2 k + 1 ) 3 0 k = 0 5 x = k = 0 5 ( 2 k + 1 ) 3 0 = ( 2 ( 5 ) ( 6 ) 2 + 6 ) 3 0 = ( 30 + 6 ) 3 0 = 1080 \begin{aligned} \cot{x} - \tan{2x} & = 0 \\ \cot{x} & = \tan{2x} \\ \tan{(90^\circ - x)} & = \tan{2x} \\ \tan{(180\color{#3D99F6}{k}^\circ+90^\circ - x)} & = \tan{(2x)} \quad \quad \quad \quad \color{#3D99F6}{[\text{for } k = 0, 1, 2, 3, 4, 5]} \\ \Rightarrow 3x & = (180k+90)^\circ \\ x & = (2k+1)30^\circ \\ \Rightarrow \sum_{k=0}^5 x & = \sum_{k=0}^5 (2k+1)30^\circ \\ & = \left(\frac{2(5)(6)}{2} + 6 \right)30^\circ \\ & = (30+6)30^\circ \\ & = \boxed{1080}^\circ \end{aligned}

Moderator note:

You have to be very careful with the 4th step. By right, what we have is

180 m + 90 x = 180 n + 2 x 180m + 90 -x = 180n + 2x

Nice one! Look at mine ;)

Miguel Vásquez Vega - 5 years, 10 months ago

Log in to reply

Well, look at mine! ¨ \ddot\smile

Kishore S. Shenoy - 5 years, 9 months ago
Kishore S. Shenoy
Aug 26, 2015

tan ( π 2 x ) = cot x = tan 2 x π 2 x = 2 x + n π x = ( 2 n + 1 ) π 6 \begin{aligned}\tan \left(\frac{\pi}{2} - x\right) = \cot x &= \tan 2x\\ \Rightarrow \frac{\pi}{2} - x &= 2x + n\pi\\ \Rightarrow x &= (2n + 1)\frac{\pi}{6}\\ \end{aligned}

\therefore Solutions are π 6 , 3 π 6 , 5 π 6 , 7 π 6 , 9 π 6 , 11 π 6 \dfrac{\pi}{6}, \dfrac{3\pi}{6}, \dfrac{5\pi}{6}, \dfrac{7\pi}{6}, \dfrac{9\pi}{6}, \dfrac{11\pi}{6}

Hence, the sum = 36 π 6 = 36 × 30 = 108 0 = \dfrac{36\pi}{6} = 36 \times 30 = \boxed{1080^{\circ}}

Moderator note:

Simple standard approach.

Nice! But... Isn't it the same as @Chew-Seong Cheong 's?

Miguel Vásquez Vega - 5 years, 9 months ago

Log in to reply

Well, I did not see it!

Kishore S. Shenoy - 5 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...