If x − y = 2 and x y = 6 3 , what is the value of x 2 + y 2 ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Solution 1
Given that ,
• x − y = 2
• x y = 6 3
Now,
x 2 + y 2
= ( x − y ) 2 + 2 x y
= ( 2 ) 2 + 2 ( 6 3 )
⇒ 4 + 1 2 6 = 1 3 0
Solution 2
Working on ( x − y ) = 2
( x − y ) = 2
⇒ ( x − y ) 2 = 2 2
Applying the formula ( a − b ) 2 = a 2 − 2 a b + b 2
⇒ ( x − y ) 2 = x 2 − 2 x y + y 2 = 4
It is given that x y = 6 3
⇒ x 2 + y 2 = 4 + 2 x y
⇒ x 2 + y 2 = 4 + 2 × 6 3 ⟹ 4 + 1 2 6 = 1 3 0
x − y ( x − y ) 2 x 2 − 2 x y + y 2 x 2 + y 2 = 2 = 2 2 = 4 = 4 + 2 x y = 4 + 2 ( 6 3 ) = 1 3 0 Given Note that x y = 6 3
Given that: x-y=2
xy=63
x^2+y^2=? ..............................................................................
Let,
x-y=2 ... (1)
xy=63 ... (2)
From (1), make x as the subject.
x=y+2 ... (3)
Substitute (3) into (2),
(y+2)y=63
y^2+2y=63
y^2+2y-63=0
Factorise this equation,
(y+9)(y-7)=0
y=-9,7
When y=-9, (substitute this into (1))
x-(-9)=2
x=-7
[LET THIS TO BE SOLUTION 1]
When y=7, (substitute this into (1))
x-(7)=2
x=9
[LET THIS TO BE SOLUTION 2]
Substitute solution 1 into x^2+y^2=?
(-7)^2+(-9)^2=?
?=49+81
?=130#
..................................OR.................................... Substitute solution 2 into x^2+y^2=?
(9)^2+(7)^2=?
?=81+49
?=130#
x − y = 2 and x y = 6 3
( x − y ) 2 = x 2 + y 2 − 2 x y
4 = x 2 + y 2 − 2 × 6 3
4 = x 2 + y 2 − 1 2 6
1 3 0 = x 2 + y 2
Then, x 2 + y 2 = 1 3 0
x^2+y^2=(x-y)^2+2xy
=4+63x2
=130
Problem Loading...
Note Loading...
Set Loading...
given that .
x-y=2 and xy=63
so, x^2+y^2
=4+126