An algebra problem by Mohammad Khaza

Algebra Level 1

If x y = 2 x-y=2 and x y = 63 xy=63 , what is the value of x 2 + y 2 x^2+y^2 ?


The answer is 130.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Mohammad Khaza
Jun 30, 2017

given that .

x-y=2 and xy=63

so, x^2+y^2

 =(x-y)^2+2 .x . y

=4+126

=130
Munem Shahriar
Jun 26, 2017

Solution 1

Given that ,

x y = 2 x - y = 2

x y = 63 x y = 63

Now,

x 2 + y 2 x^2 + y^2

= ( x y ) 2 + 2 x y = (x - y)^2 + 2 x y

= ( 2 ) 2 + 2 ( 63 ) = (2)^2 + 2(63)

4 + 126 = 130 \Rightarrow 4 + 126 = \boxed {130}

Solution 2

Working on ( x y ) = 2 (x - y) = 2

( x y ) = 2 (x - y) = 2

( x y ) 2 = 2 2 \Rightarrow (x - y)^2 = 2^2

Applying the formula ( a b ) 2 = a 2 2 a b + b 2 (a - b)^2 = a^2 - 2ab + b^2

( x y ) 2 = x 2 2 x y + y 2 = 4 \Rightarrow (x - y)^2 = x^2 - 2xy + y^2 = 4

It is given that x y = 63 xy = 63

x 2 + y 2 = 4 + 2 x y \Rightarrow x^2 + y^2 = 4 + 2xy

x 2 + y 2 = 4 + 2 × 63 4 + 126 = 130 \Rightarrow x^2 + y^2 = 4 + 2 \times 63 \implies 4 + 126 = \boxed{130}

Chew-Seong Cheong
Jun 25, 2017

x y = 2 Given ( x y ) 2 = 2 2 x 2 2 x y + y 2 = 4 x 2 + y 2 = 4 + 2 x y Note that x y = 63 = 4 + 2 ( 63 ) = 130 \begin{aligned} x - y & = 2 & \small \color{#3D99F6} \text{Given} \\ (x - y)^2 & = 2^2 \\ x^2 - 2xy + y^2 & = 4 \\ x^2 + y^2 & = 4 + 2\color{#3D99F6}xy & \small \color{#3D99F6} \text{Note that }xy = 63 \\ & = 4 + 2\color{#3D99F6}(63) \\ & = \boxed{130} \end{aligned}

Jun Chao Thean
Jul 7, 2017

Given that: x-y=2

xy=63

x^2+y^2=? ..............................................................................

Let,

x-y=2 ... (1)

xy=63 ... (2)

From (1), make x as the subject.

x=y+2 ... (3)

Substitute (3) into (2),

(y+2)y=63

y^2+2y=63

y^2+2y-63=0

Factorise this equation,

(y+9)(y-7)=0

y=-9,7

When y=-9, (substitute this into (1))

x-(-9)=2

x=-7

[LET THIS TO BE SOLUTION 1]

When y=7, (substitute this into (1))

x-(7)=2

x=9

[LET THIS TO BE SOLUTION 2]

Substitute solution 1 into x^2+y^2=?

(-7)^2+(-9)^2=?

?=49+81

?=130#

..................................OR.................................... Substitute solution 2 into x^2+y^2=?

(9)^2+(7)^2=?

?=81+49

?=130#

x y = 2 x - y = 2 and x y = 63 xy = 63

( x y ) 2 = x 2 + y 2 2 x y (x - y)^2 = x^2 + y^2 - 2xy

4 = x 2 + y 2 2 × 63 4 = x^2 + y^2 - 2 \times 63

4 = x 2 + y 2 126 4 = x^2 + y^2 - 126

130 = x 2 + y 2 130 = x^2 + y^2

Then, x 2 + y 2 = 130 x^2 + y^2 = \boxed { \boxed { 130 } }

Halima Tahmina
Jun 24, 2017

x^2+y^2=(x-y)^2+2xy

=4+63x2

=130

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...