An algebra problem by Mohammad Khaza

Algebra Level 3

If x 1 x = 4 x-\dfrac 1x=4 then x 4 + 1 x 4 = ? x^4+\dfrac 1{x^4}=?


The answer is 322.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jun 25, 2017

x 1 x = 4 ( x 1 x ) 2 = 4 2 x 2 2 + 1 x 2 = 16 x 2 + 1 x 2 = 18 ( x 2 + 1 x 2 ) 2 = 1 8 2 x 4 + 2 + 1 x 4 = 1 8 2 x 4 + 1 x 4 = 322 \begin{aligned} x - \frac 1x & = 4 \\ \left(x - \frac 1x \right)^2 & = 4^2 \\ x^2 - 2 + \frac 1{x^2} & = 16 \\ x^2 + \frac 1{x^2} & = 18 \\ \left(x^2 + \frac 1{x^2}\right)^2 & = 18^2 \\ x^4 + 2 + \frac 1{x^4} & = 18^2 \\ x^4 + \frac 1{x^4} & = \boxed{322} \end{aligned}

Munem Shahriar
Jul 7, 2017

Working on x x - 1 x \dfrac{1}{x} = 4 = 4

x x - 1 x \dfrac{1}{x} = 4 = 4

\Rightarrow ( x (x - 1 x ) 2 \dfrac{1}{x})^2 = 4 2 = 4^2

Applying the formula: ( a b ) 2 = a 2 2 a b + b 2 (a - b)^2 = a^2 - 2ab + b^2

x 2 2 \Rightarrow x^2 - 2 x x \cdot 1 x \dfrac{1}{x} + + ( 1 x ) 2 (\dfrac{1}{x})^2 = 16 = 16

x 2 2 + \Rightarrow x^2 - 2 + 1 x 2 \dfrac{1}{x^2} = 16 = 16 x 2 + \Rightarrow x^2 + 1 x 2 \dfrac{1}{x^2} = 18 = 18

( x 2 + \Rightarrow (x^2 + 1 x 2 ) 2 \dfrac{1}{x^2})^2 = 1 8 2 = 18^2

x 4 + 2 + \Rightarrow x^4 + 2 + 1 x 4 \dfrac{1}{x^4} = 1 8 2 = 18^2

Therefore, x 4 + x^4 + 1 x 4 \dfrac{1}{x^4} = 18 × 18 2 = 322 = 18 \times 18 - 2 = \boxed{322}

. .
Feb 28, 2021

x 1 x = 4 x 2 1 = 4 x x 2 4 x 1 = 0 x = 4 ± 4 2 4 × 1 × 1 2 × 1 x = 4 ± 16 + 4 2 x = 2 ± 5 ( 2 ± 5 ) 4 + 1 ( 2 ± 5 ) 4 322 \displaystyle x - \frac { 1 } { x } = 4 \rightarrow x ^ { 2 } - 1 = 4x \rightarrow x ^ { 2 } -4x - 1 = 0 \rightarrow x = \frac { 4 \pm \sqrt { -4 ^ { 2 } - 4 \times 1 \times -1 } } { 2 \times 1 } \rightarrow x = \frac { 4 \pm \sqrt { 16 + 4 } } { 2 } \rightarrow x = 2 \pm \sqrt { 5 } \rightarrow ( 2 \pm \sqrt { 5 } ) ^ { 4 } + \frac { 1 } { ( 2 \pm \sqrt { 5 } ) ^ { 4 } } \rightarrow \boxed { 322 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...