Find minimal value of z , if z = x 2 + 2 x y + 3 y 2 + 2 x + 6 y + 4 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
We have z = ( x 2 + y 2 + 1 + 2 x y + 2 x + 2 y ) + ( 2 y 2 + 4 y + 2 ) + 1 = ( x + y + 1 ) 2 + 2 ( y + 1 ) 2 + 1 , so the minimal value of z is 1.
It would be better if you mention in the problem that x , y are real numbers.
You haven't proved that equality can be achieved, i.e. both x + y + 1 and y + 1 can equal to zero at the same time. It can be easily proved though.
Why can't we write z as the sum of two squares .?and then find.ans is coming 10
Problem Loading...
Note Loading...
Set Loading...
z z = x 2 + 2 x y + 3 y 2 + 2 x + 6 y + 4 = x 2 + ( 2 y + 2 ) x + 3 y 2 + 6 y + 4 1
1 The minimum value of z happen when x = − 2 2 y + 2 = − ( y + 1 )
x = − ( y + 1 ) ⟹ z = ( − ( y + 1 ) ) 2 + ( 2 y + 2 ) ( − ( y + 1 ) ) + 3 y 2 + 6 y + 4 z = y 2 + 2 y + 1 − 2 y 2 − 2 y − 2 y − 2 + 3 y 2 + 6 y + 4 z = 2 y 2 + 4 y + 3 2
2 The minimum value of z happen when y = − 2 . 2 4 = − 1
y = − 1 ⟹ z = 2 ( − 1 ) 2 + 4 ( − 1 ) + 3 z = 2 − 4 + 3 z = 1