An algebra problem by Nika Glunchadze

Algebra Level 4

Find minimal value of z z , if z = x 2 + 2 x y + 3 y 2 + 2 x + 6 y + 4 z=x^2+2xy+3y^2+2x+6y+4 .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

James Pohadi
Jul 14, 2016

z = x 2 + 2 x y + 3 y 2 + 2 x + 6 y + 4 z = x 2 + ( 2 y + 2 ) x + 3 y 2 + 6 y + 4 1 \begin{aligned} z & =x^{2}+2xy+3y^{2}+2x+6y+4 \\ z & =x^{2}+(2y+2)x+3y^{2}+6y+4 \color{#D61F06}{{ }^{1}} \end{aligned}

1 \color{#D61F06}{{ }^{1}} The minimum value of z z happen when x = 2 y + 2 2 = ( y + 1 ) x=-\dfrac{2y+2}{2}=-(y+1)

x = ( y + 1 ) z = ( ( y + 1 ) ) 2 + ( 2 y + 2 ) ( ( y + 1 ) ) + 3 y 2 + 6 y + 4 z = y 2 + 2 y + 1 2 y 2 2 y 2 y 2 + 3 y 2 + 6 y + 4 z = 2 y 2 + 4 y + 3 2 \begin{aligned} x=-(y+1) \implies & z=(-(y+1))^{2}+(2y+2)(-(y+1))+3y^{2}+6y+4 \\ & z=y^{2}+2y+1-2y^{2}-2y-2y-2+3y^{2}+6y+4 \\ & z=2y^{2}+4y+3 \color{#D61F06}{{ }^{2}} \end{aligned}

2 \color{#D61F06}{{ }^{2}} The minimum value of z z happen when y = 4 2.2 = 1 y=-\dfrac{4}{2.2}=-1

y = 1 z = 2 ( 1 ) 2 + 4 ( 1 ) + 3 z = 2 4 + 3 z = 1 \begin{aligned} y=-1 \implies & z=2(-1)^{2}+4(-1)+3 \\ & z=2-4+3 \\ & \boxed{z=1} \end{aligned}

Nika Glunchadze
May 1, 2016

We have z = ( x 2 + y 2 + 1 + 2 x y + 2 x + 2 y ) + ( 2 y 2 + 4 y + 2 ) + 1 = ( x + y + 1 ) 2 + 2 ( y + 1 ) 2 + 1 z=(x^2+y^2+1+2xy+2x+2y)+(2y^2+4y+2)+1=(x+y+1)^2+2(y+1)^2+1 , so the minimal value of z is 1.

It would be better if you mention in the problem that x , y x, y are real numbers.

You haven't proved that equality can be achieved, i.e. both x + y + 1 x + y + 1 and y + 1 y + 1 can equal to zero at the same time. It can be easily proved though.

Pranshu Gaba - 5 years, 1 month ago

Why can't we write z as the sum of two squares .?and then find.ans is coming 10

Tarun B - 3 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...