⌊ x ⌋ + ⌊ 2 x ⌋ + ⌊ 3 2 x ⌋ + ⌊ 3 x ⌋ + ⌊ 4 x ⌋ + ⌊ 5 x ⌋
If 0 ≤ x < 3 , find the total number of distinct values of the expression above.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
i did the same but just calculated to 1/2 , it had 5 values By symmetry , the ans should be 30, by the you did u too use wolfram alpha ? @Aniket Sanghi
Log in to reply
and it had 30 solvers uptill now ! i was the 31st , co-incidences !
I didn't use wolfram alpha
Dammit I missed one range. I did similarly btw. Nice Sol.
I
u
s
e
d
K
E
I
S
A
N
A
d
v
a
n
c
e
d
C
a
l
c
u
l
a
t
o
r
.
i
n
t
(
2
x
/
3
)
+
i
n
t
(
x
)
+
i
n
t
(
2
x
)
+
i
n
t
(
3
x
)
+
i
n
t
(
4
x
)
+
i
n
t
(
5
x
)
x
0
,
.
0
5
,
6
1
F
o
r
f
(
x
)
=
i
n
t
(
2
x
/
3
)
+
i
n
t
(
x
)
+
i
n
t
(
2
x
)
+
i
n
t
(
3
x
)
+
i
n
t
(
4
x
)
+
i
n
t
(
5
x
)
,
x
f
r
o
m
0
i
n
c
r
e
a
s
e
d
b
y
0
.
0
5
f
o
r
6
1
c
y
c
l
e
s
I
g
o
t
i
n
t
e
g
e
r
v
a
l
u
e
s
−
f
=
0
t
o
4
1
,
a
n
d
f
(
3
)
=
4
7
w
i
t
h
m
i
s
s
i
n
g
i
n
t
e
g
e
r
s
:
−
5
;
1
1
,
1
2
,
1
3
,
1
4
;
2
0
,
2
1
;
2
7
,
2
8
,
2
9
,
3
0
;
3
6
.
T
o
t
a
l
1
2
.
I
c
h
e
c
k
e
d
t
o
s
e
e
t
h
e
y
r
e
a
l
y
a
r
e
m
i
s
s
i
n
g
a
s
w
e
l
l
a
s
4
1
i
s
t
h
e
l
a
s
t
n
u
m
b
e
r
a
s
f
o
l
l
o
w
s
.
C
h
e
c
k
f
o
r
5
:
f
(
.
4
5
)
C
h
e
c
k
f
o
r
1
1
,
1
2
,
1
3
,
1
4
:
f
(
.
9
5
)
=
4
,
f
(
5
)
=
1
0
,
f
(
1
)
=
6
.
f
(
.
4
9
9
9
9
9
9
9
9
9
)
a
l
s
o
=
1
5
.
f
(
.
9
9
9
9
9
9
9
9
9
)
a
l
s
o
=
4
=
1
0
⟹
5
I
S
m
i
s
s
i
n
g
.
⟹
1
1
,
1
2
,
1
3
,
1
4
A
R
E
m
i
s
s
i
n
g
.
S i m i l a r l y , f ( 1 . 4 5 ) S i m i l a r l y , f ( 1 . 9 5 ) S i m i l a r l y , f ( 2 . 4 5 ) = 1 9 , = 2 6 , = 3 5 , f ( 1 . 5 ) = 2 2 . f ( 2 ) = 3 1 . f ( 2 . 5 ) = 3 7 . ⟹ 2 0 , 2 1 A R E m i s s i n g . ⟹ 2 7 , 2 8 , 2 9 , 3 0 A R E m i s s i n g . ⟹ 3 6 I S m i s s i n g .
A n d f ( 2 . 9 5 ) = 4 1 , f ( 3 ) = 4 7 . f ( 2 . 9 9 9 9 9 9 9 9 ) a l s o = 4 1 , ⟹ 4 1 I S t h e l a s t i n t e g e r . S o t o t a l 4 1 + 1 ( f o r 0 ) − 1 2 = 3 0 . N o t e t h a t , m i s s i n g n u m b e r s a r e a t i n t e r v a l s o f 0 . 5 . F o u r e a c h b e f o r e x = 1 a n d b e f o r e x = 2 . O n e e a c h b e f o r e x = 0 . 5 a n d b e f o r e x = 2 . 5 . T w o b e f o r e x = 1 . 5 .
Problem Loading...
Note Loading...
Set Loading...
Analysed for 0 to 1
First divide the region into diff ranges to get diff integers for each . Then make these ranges into one specific range series.
Got 10 diff ranges (0,1/5)(1/5,1/4)(1/4,1/3)(1/3,2/5)(2/5,1/2)(1/2,3/5)(3/5,2/3)(2/3,3/4)(3/4,4/5)(4/5,1)
For all these the equation yields different values
By symmetry for 1 to 2 & 2 to 3 also we would get 10 diff values
Hence total is 30 values.......