The important redundancy

Algebra Level 2

f ( x ) = 9 x 9 x + 3 \large f(x)=\frac{9^x}{9^x+3}

Suppose we define f ( x ) f(x) as above. Let a = f ( x ) + f ( 1 x ) a=f(x)+f(1-x) and b = f ( 1 1996 ) + f ( 2 1996 ) + f ( 3 1996 ) + + f ( 1995 1996 ) . b=f\left(\frac1{1996}\right) + f\left(\frac2{1996}\right) + f\left(\frac3{1996}\right)+\ldots+ f\left(\frac{1995}{1996}\right).

Evaluate a + b a + b .


The answer is 998.500.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Shivamani Patil
Jul 8, 2015

We have f ( x ) = 9 x 9 x + 3 , f ( 1 x ) = 9 1 x 9 1 x + 3 = 9 9 + 3 × 9 x f\left( x \right) =\frac { { 9 }^{ x } }{ { 9 }^{ x }+3 } ,f(1-x)=\frac { { 9 }^{ 1-x } }{ { 9 }^{ 1-x }+3 } =\frac { 9 }{ 9+3\times { 9 }^{ x } } .

f ( x ) + f ( x 1 ) = 9 9 + 3 × 9 x + 9 x 9 x + 3 = 1 f\left( x \right) +f(x-1)=\frac { 9 }{ 9+3\times { 9 }^{ x } } +\frac { { 9 }^{ x } }{ { 9 }^{ x }+3 } =1 by cross multiplying a simplifying.

f ( n 1996 ) + f ( 1996 n 1996 ) = 1 \therefore f\left( \frac { n }{ 1996 } \right) +f\left( \frac { 1996-n }{ 1996 } \right) =1 .

Mean of 1 , 2 , 3 , . . . . , 1995 1,2,3,....,1995 is 998 998 .

b = f ( 1 1996 ) + f ( 2 1996 ) + . . . + f ( 1995 1996 ) b=f\left( \frac { 1 }{ 1996 } \right) +f\left( \frac { 2 }{ 1996 } \right) +...+f\left( \frac { 1995 }{ 1996 } \right)

= 1 + 1 + 1 + . . + 1 =1+1+1+..+1 (997 times) + f ( 998 1996 ) f\left( \frac { 998 }{ 1996 } \right) .

We know that f ( 998 1996 ) + f ( 1996 998 1996 ) = 1 = 2 f ( 998 1996 ) \therefore f\left( \frac { 998 }{ 1996 } \right) +f\left( \frac { 1996-998 }{ 1996 } \right) =1=2f\left( \frac { 998 }{ 1996 } \right) .

f ( 998 1996 ) = 0.5 \therefore f\left( \frac { 998 }{ 1996 } \right) =0.5 .

Therefore b = 997.5 b=997.5 and a = 1 a=1 .

Info Web
Aug 30, 2020

9^x can be assumed as "t"

f (x) = t/(t+3) ; f (1-x) = (9/t)/(9/t + 3) { since 9^(1-x) = 9/t } .

therefore, a = f (x) + f (1-x) = t/(t+3) + 3/(t+3) = 1 .

f (1995/1996) can be written

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...