An algebra problem by Ossama Ismail

Algebra Level 3

A function f f is def ned on the positive integers satis fies f ( 1 ) = 255 f(1) = 255 and i = 1 n f ( i ) = n 2 f ( n ) for n > 1 \sum_{i=1}^n f(i) = n^2 f(n) \ \ \text {for} \ \ n > 1

Find 1 f ( 255 ) \dfrac{1}{f(255)} .


The answer is 128.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ossama Ismail
Mar 9, 2017

n 2 f ( n ) = f ( 1 ) + f ( 2 ) + f ( 3 ) + + f ( n ) ( n 2 1 ) f ( n ) = f ( 1 ) + f ( 2 ) + f ( 3 ) + + f ( n 1 ) f ( n ) = f ( 1 ) + f ( 2 ) + f ( 3 ) + + f ( n 1 ) ( n 2 1 ) \begin{aligned} n^2 f(n) &= f(1) + f(2) + f(3) + \cdots + f(n) \\ (n^2 -1) f(n) &= f(1) + f(2) + f(3) + \cdots + f(n-1) \\ f(n) &= \dfrac {f(1)+ f(2) + f(3) + \cdots + f(n-1)}{(n^2 -1) } \end{aligned}

By using simple induction

f ( 1 ) = 255 f ( 2 ) = f ( 1 ) ( 2 2 1 ) = f ( 1 ) 3 = 2 f ( 1 ) 2 3 f ( 3 ) = f ( 2 ) + f ( 2 ) ( 3 2 1 ) = f ( 1 ) + f ( 1 ) 3 8 = 4 f ( 1 ) 3 8 = 2 f ( 1 ) 3 4 f ( n ) = 2 f ( 1 ) n ( n + 1 ) \begin{aligned} f(1) &= 255 \\ f(2) = \dfrac {f(1)}{(2^2-1)} = \dfrac {f(1)}{3} &= \dfrac {2 f(1)}{2\cdot 3} \\ f(3) = \dfrac {f(2) + f(2)}{(3^2-1)} = \dfrac {f(1) + \dfrac{f(1)}{3}}{8} = \dfrac {\dfrac{4f(1)}{3}}{8} &= \dfrac{2 f(1)}{3\cdot 4} \\ \cdots \\ f(n) &= \dfrac{2 f(1) }{n(n+1)} \end{aligned}

then f ( 255 ) = 2 255 255 256 = 2 256 f(255) = \dfrac{2 \cdot 255}{255 \cdot 256} = \dfrac{2}{256}

Answer = 1 f ( 255 ) = 128 = \dfrac{1}{f(255)} = 128

i = 1 n f ( i ) = n 2 f ( n ) \sum_{i=1}^n f(i) = n^2 f(n)

Replacing n n by n + 1 n+1 ,

i = 1 n + 1 f ( i ) = n + 1 2 f ( n + 1 ) \sum_{i=1}^{n+1} f(i) = {n+1}^2 f(n+1)

Subtracting above 2 equations and expanding the square,

n 2 f ( n ) = ( n 2 + 2 n ) f ( n + 1 ) n^2 f(n)=(n^2+2n) f(n+1)

Thus we have f ( n + 1 ) = n n + 2 f ( n ) f(n+1)=\frac{n}{n+2} f(n) (You could solve it using reccurence or by trying to find a pattern)

Putting n n + 1 n \to n+1

f ( n + 2 ) = n + 1 n + 3 ( n n + 2 f ( n ) ) f(n+2)=\frac{n+1}{n+3} (\frac{n}{n+2} f(n))

Seeing the pattern:

f ( n + a ) = i = n n + a 1 i j = n + 2 n + a + 1 f ( n ) f(n+a)= \frac{\prod_{i=n}^{n+a-1} i}{\prod_{j=n+2}^{n+a+1}} f(n)

\[f(n+a)=\frac{(n)(n+1)}{(n+a)(n+a+1)} f(n)

If n=1 and a=254

\[f(255)=\frac{(1)(2)}{(255)(256)} (255)\]

f ( 225 ) = 1 128 f(225)= \frac{1}{128}

Thus our answer is 128

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...