Find the coefficient of in the following expansion:
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Notice that for a polynomial expansion of the form:
( x − a 1 ) ( x − a 2 ) ( x − a 3 ) … ( x − a n ) = x n − ( a 1 + a 2 + a 3 + … + a n ) x n − 1 + …
The coefficient of the term with the second highest power will be − ( a 1 + a 2 + a 3 + … + a n )
Don't believe? Try it with a few smaller polynomials.
( x − 1 ) ( x − 2 ) = x 2 − x − 2 x + 2 = x 2 − ( 1 + 2 ) x + 2 ( x − 1 ) ( x − 2 ) ( x − 3 ) = ( x 2 − x − 2 x + 2 ) ( x − 3 ) = x 3 − x 2 − 2 x 2 + 2 x − 3 x 2 + 3 x + 6 x − 6 = x 2 − ( 1 + 2 + 3 ) x 2 + 1 1 x − 6
Therefore,
( x − 1 ) ( x − 2 ) ( x − 3 ) … ( x − 1 0 0 ) = x 1 0 0 − ( 1 + 2 + 3 + … + 1 0 0 ) x 9 9 + …
The coefficient of x 9 9
= − ( 1 + 2 + 3 + … + 1 0 0 ) = − ( n = 1 ∑ 1 0 0 n ) = − ( 2 1 0 0 ( 1 0 1 ) ) = − ( 5 0 ) ( 1 0 1 ) = − 5 0 5 0