But How Are They Connected?

Algebra Level 2

3 a = 5 b = 15 \large 3^a=5^b=15

If a a and b b are numbers satisfying the equation above, find 1 a + 1 b \dfrac{1}{a}+\dfrac{1}{b} .


The answer is 1.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Paola Ramírez
May 20, 2016

Relevant wiki: Properties of Logarithms - Basic

3 a = 15 3 = 1 5 1 a 3^a=15\Rightarrow 3=15^{\frac{1}{a}}

5 b = 15 5 = 1 5 1 b 5^b=15\Rightarrow 5=15^{\frac{1}{b}}

3 × 5 = 1 5 1 a + 1 b = 15 1 a + 1 b = 1 . 3\times 5=15^{\frac{1}{a}+\frac{1}{b}}=15 \therefore \boxed{\frac{1}{a}+\frac{1}{b}=1}.

What if the question ask for a + b a+b ?

Log in to reply

a + b = log 3 + log 5 log 3 + log 3 + log 5 log 5 a + b = \frac{\log3 + \log5}{\log3} + \frac{\log3 + \log5}{\log5}

akash patalwanshi - 5 years ago

A technical way to get it is using logarithms, but I unknown if there is an algebraic solution for it

Paola Ramírez - 5 years ago

Log in to reply

No matter what you use but i want the answer.

a = log 3 15 a=\log_3 15 , b = log 5 15 b=\log_5 15 .

1 a + 1 b = log 15 3 + log 15 5 = log 15 15 = 1 \dfrac 1 a + \dfrac 1 b = \log_{15} 3+ \log_{15} 5 = \log_{15} 15 = \boxed1 .

@Abhay Kumar here is an answer to your question

a + b = log 3 15 + log 5 15 4.1476 a+b=\log_3 15+\log_5 15\approx 4.1476

Paola Ramírez - 5 years ago

Log in to reply

Thank you.

Good solution! :)

Paola Ramírez - 5 years ago

3 a = 15 3^a=15 \implies ln 3 a = ln 15 \ln 3^a=\ln 15 \implies a = ln 15 ln 3 a=\dfrac{\ln 15}{\ln 3} \implies 1 a = ln 3 ln 15 \dfrac{1}{a}=\dfrac{\ln 3}{\ln 15}

5 b = 15 5^b=15 \implies ln 5 b = ln 15 \ln 5^b=\ln 15 \implies b = ln 15 ln 5 b=\dfrac{\ln 15}{\ln 5} \implies 1 b = ln 5 ln 15 \dfrac{1}{b}=\dfrac{\ln 5}{\ln 15}

1 a + 1 b = ln 3 ln 15 + ln 5 ln 15 = 1.00 \dfrac{1}{a}+\dfrac{1}{b}=\dfrac{\ln 3}{\ln 15} + \dfrac{\ln 5}{\ln 15} = 1.00

Jeremy Ho
Jun 1, 2016

3 a = 15 3^{a}=15

3 a 1 = 5 3^{a-1}=5

( 3 a 1 ) b = 15 (3^{a-1})^b=15

a = b ( a 1 ) \implies a=b(a-1)

a + b = a b a + b = ab

a + b a b = 1 {{a + b}\over{ab}}=1

1 a + 1 b = 1 {1\over a}+{1\over b}=1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...