That's Plenty of Digits There!

Algebra Level 1

1 0 x = ( 1 0 624 + 25 ) 2 ( 1 0 624 25 ) 2 \large 10^x=\Big(10^{624}+25\Big)^2-\Big(10^{624}-25\Big)^2

What is the value of x x that satisfies the equation above?


The answer is 626.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

16 solutions

Antony Diaz
Mar 7, 2015

If a = 1 0 624 a= 10^{624} and b = 25 b=25 , then

1 0 x = ( a + b ) 2 ( a b ) 2 = a 2 + 2 a b + b 2 ( a 2 2 a b + b 2 ) = 4 a b 10^x = (a + b)^2 - (a - b)^2 = a^2 + 2ab + b^2 - (a^2 - 2ab + b^2) = 4ab

Because b = 25 b = 25 , then 4 b = 100 4b = 100 . Moreover, since a = 1 0 624 a = 10^{624} , then 4 a b = 100 a = 1 0 626 4ab = 100a = 10^{626} , giving us our final answer of 626.

Same solution. Nice and simple!

Ken Collins - 5 years, 6 months ago
Sid 2108
Mar 8, 2015

Let a = ( 1 0 624 + 25 ) a=(10^{624}+25) and b = ( 1 0 624 25 ) b=(10^{624}-25)

Thus by a 2 b 2 = ( a + b ) ( a b ) a^2-b^2=(a+b)(a-b) we get, 1 0 x = ( 1 0 624 + 25 + 1 0 624 25 ) ( 1 0 624 + 25 1 0 624 + 25 ) 10^x=(10^{624}+25+10^{624}-25)(10^{624}+25-10^{624}+25)

1 0 x = ( 2 × 1 0 624 ) ( 2 × 25 ) 10^x=(2×10^{624})(2×25)

1 0 x = 4 × 25 × 1 0 624 10^x=4×25×10^{624}

1 0 x = 100 × 1 0 624 10^x=100×10^{624}

1 0 x = 1 0 2 × 1 0 624 10^x=10^2×10^{624}

1 0 x = 1 0 2 + 624 10^x=10^{2+624}

1 0 x = 1 0 626 10^x=10^{626}

x = 626 \boxed{x=626}

I did it exactly the same way bro, :) nice work.

samuel ayinde - 6 years, 3 months ago

Thanks this was so easy to understand

Leeann Campbell - 6 years, 3 months ago

this is exactly what i did to solve the problem

Soha Farhin Pine Pine - 4 years, 9 months ago

Same. Did it the exact same way!

Raghu Alluri - 1 year, 9 months ago

1 0 x = ( 1 0 624 + 25 ) 2 ( 1 0 624 25 ) 2 = 1 0 1248 + ( 50 ) 1 0 624 + 625 1 0 1248 + ( 50 ) 1 0 624 625 = ( 100 ) 1 0 624 = 1 0 626 x = 626 \begin{aligned} 10^x & = \left(10^{624} + 25 \right)^2 - \left(10^{624} - 25 \right)^2 \\ & = 10^{1248} +(50)10^{624} + 625 - 10^{1248} +(50)10^{624} - 625 \\ & = (100)10^{624} \\ & = 10^{626} \\ \\ \Rightarrow x & = \boxed{626} \end{aligned}

Paola Ramírez
Mar 7, 2015

1 0 x = ( 1 0 624 + 25 ) 2 ( 1 0 624 25 ) 2 10^x=(10^{624}+25)^2-(10^{624}-25)^2

1 0 x = ( 1 0 624 + 25 + 1 0 624 25 ) ( 1 0 624 + 25 1 0 624 + 25 10^x=(10^{624}+25+10^{624}-25)(10^{624}+25-10^{624}+25

1 0 x = 2 ( 1 0 624 ) ( 50 ) 10^x=2(10^{624})(50)

1 0 x = 100 ( 1 0 624 ) 10^x=100(10^{624})

1 0 x = 1 0 626 10^x=10^{626}

x = 626 \boxed{x=626}

Oh wow, at first I was amazed that it is a power of 10. Nice problem :)

Calvin Lin Staff - 6 years, 3 months ago

Log in to reply

Powers of 10 everywhere.Thanks!

Paola Ramírez - 6 years, 3 months ago

Hai.. Welcome

Parameswaran PG - 6 years, 3 months ago
Jules Lewis
Mar 13, 2015

L e t y = 1 0 624 i ( y + 25 ) 2 = y 2 + 50 y + 625 i i ( y 25 ) 2 = y 2 50 y + 625 i i i = 100 y = 100 0 624 = 1 0 626 T h e r e f o r e x = 626 Let\quad y = 10^{624} \\ i \rightarrow \quad (y+25)^2 = y^2 + 50y + 625 \\ ii \rightarrow \quad (y-25)^2 = y^2 - 50y + 625 \\ i - ii = 100y = 1000^{624} = 10^{626} \\Therefore \quad \boxed{x = 626}

Andrew Caldwell
Mar 12, 2015

If we take x=10^624 and y=25, then we have:

(x + y)^2 - (x - y)^2

= (x^2 + 2xy + y^2) - (x^2 - 2xy + y^2)

= 4xy = 100x

= x^626

  • I saw two different ways to solve this one, feel free to use the one you think it's easier.
  • Method I : let's set a = ( 1 0 624 + 25 ) a = (10^{624} + 25) and b = ( 1 0 624 25 ) b = (10^{624} - 25) . 1 0 x = a 2 b 2 = ( a + b ) ( a b ) 10^{x} = a^{2} - b^{2} = (a + b)(a - b) . 1 0 x = ( 2 × 10 0 624 ) ( 50 ) = ( 100 × 1 0 624 ) 10^{x} = (2\times100^{624})(50) = (100\times 10^{624}) .
  • Since 100 = 1 0 2 100 = 10^{2} , we have 1 0 x = 1 0 624 + 2 = > x = 626 10^{x} = 10^{624 + 2} => x = 626 .

  • Method II : now we set a = 1 0 624 a = 10^{624} and b = 25 b = 25 .
    1 0 x = ( a + b ) 2 ( a b ) 2 10^{x} = (a + b)^{2} - (a - b)^2 .
    1 0 x = a 2 + 2 a b + b 2 a 2 + 2 a b b 2 = 4 a b 10^{x} = a^{2} + 2ab + b^{2} - a^{2} +2ab - b^{2} = 4ab .
    4 a b = 4 × 25 × 1 0 624 = 100 × 1 0 624 4ab = 4\times 25 \times 10^{624} = 100\times 10^{624} .
    1 0 x = 1 0 624 + 2 10^{x} = 10^{624 + 2}



  • So, we conclude x = 626 .

Brock Brown
Mar 9, 2015

Python:

1
2
3
4
5
6
7
8
def left(x):
    return 10**x
def right(x):
    return (10**624+25)**2-(10**624-25)**2
x = 0
while left(x) != right(x):
    x += 1
print "Answer:", x

Note: I kind of cheated by looking at the input field to see that it wasn't asking for a decimal answer, so I knew the answer was an integer.

Gia Hoàng Phạm
Sep 23, 2018

1 0 x = ( 1 0 624 + 25 ) 2 ( 1 0 624 25 ) 2 = ( ( 1 0 624 + 25 ) ( 1 0 624 25 ) ) ( ( 1 0 625 + 25 ) + ( 1 0 625 25 ) ) = ( 1 0 624 + 25 1 0 624 + 25 ) ( 1 0 625 + 25 + 1 0 625 25 ) 10^x=(10^{624}+25)^2-(10^{624}-25)^2=((10^{624}+25)-(10^{624}-25))((10^{625}+25)+(10^{625}-25))=(10^{624}+25-10^{624}+25)(10^{625}+25+10^{625}-25)

= 2 × 25 × 2 × 1 0 624 = 100 × 1 0 624 = 1 0 2 × 1 0 624 = 1 0 2 + 624 = 1 0 626 x = 626 =2 \times 25 \times 2 \times 10^{624}=100 \times 10^{624}=10^2 \times 10^{624}=10^{2+624}=10^{626} \implies x=\boxed{\large{626}}

there is a typo dude, the answer is 626, nice work by the way,I did the same thing as you!

達夫 邱 - 2 years, 4 months ago
Razzi Masroor
Jun 26, 2016

lets say 10^624 +25= a, and 10^624-25=b , then the equation is a^2-b^2= (a+b)(a-b), which substituting gives us that 10^x=2(10^624)(50). so 10^x=100(10^624), so x=626

Moderator note:

Nice approach :)

Ahmed Obaiedallah
Nov 12, 2015

The Only terms will remain are ( 2 × 1 s t t e r m × 2 n d t e r m ) (2\times 1st\space term\times 2nd\space term) for each

So it will be;

1 0 x = 4 × 25 × 1 0 624 = 100 × 1 0 624 = 1 0 2 × 1 0 624 = 1 0 626 10^x=4\times25\times10^{624}=100\times10^{624}=10^2\times10^{624}=10^{626}

x = 626 x=626

Precision Graph
Mar 19, 2015

Using the algebraic identity, a^{2} - b^{2} = (a-b)(a+b), we get 1 0 x = ( 1 0 624 + 25 1 0 624 + 25 ) ( 1 0 624 + 25 + 1 0 624 25 ) = ( 50 ) ( 1 0 624 ) ( 2 ) ( 1 0 x ) / ( 1 0 624 ) = 1001 0 x 624 = 1 0 2 x 624 = 2 x = 625 10^{x} = (10^{624}+25-10^{624}+25)(10^{624}+25+10^{624}-25) =(50)(10^{624})(2) (10^{x})/(10^{624})=100 10^{x-624}=10^{2} x-624=2 x=625

Arvind Patil
Mar 18, 2015

If ä=10^624 & b=5 then 10^x= ( ä+b )^2 - ( ä-b )^2 = ä^2+2ab+b^2 -( ä^2-2ab +b^2) =4ab =4 10^624 25 =10^2*10^624 =10^626 » x = 626

Gamal Sultan
Mar 14, 2015

10^x = (10^624 + 25 + 10^624 - 25)(10^624 + 25 - 10^624 + 25) =

(2 . 10^624 )(50) =10^626

x = 626

David Williams
Mar 9, 2015

Write equation as:

(A+B)^2 - (A-B)^2 =10^x where A=10^624 and B=5^2 (or [10/2]^2)

expanding left side gives:

4AB=10^x

= 4 x 10^624 x [10/2]^2 = 10^x

= [4/4] x 10^624 x 10^2 = 10^ x

=10^624 x 10^2 = 10^x

therefore:

x = 624 + 2 = 626

Samy Ghania
Mar 8, 2015

Let y=10^(624) +25 Note ^ means power to Let Z=10^(624) -25 Then Y^2-Z^2 =(Y+Z)(Y-Z)=100*10^624 =10^626 Then X=626

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...