An algebra problem by Paola Ramírez

Algebra Level 4

Find the sum of all integer solution x x for the inequality:

4 x 2 ( 1 1 + 2 x ) 2 < 2 x + 9 \frac{4x^2}{(1-\sqrt{1+2x})^2}<2x+9


The answer is 15.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sabhrant Sachan
Jun 11, 2016

Consider 2 x + 1 = t 4 x 2 ( 1 1 + 2 x ) 2 < 2 x + 9 ( t 1 ) 2 ( 1 t ) 2 < t + 8 D f x 1 2 and x 0 ( t 1 ) 2 ( t + 1 ) 2 ( 1 t ) 2 < t + 8 t + 1 + 2 t < t + 8 t < 7 2 t < 49 4 x < 45 8 Possible values of x = 1 , 2 , 3 , 4 , 5 Answer : 5 6 2 = 15 \text{Consider } \quad 2x+1 = t \\ \dfrac{4x^2}{(1-\sqrt{1+2x})^2}<2x+9 \implies \dfrac{(t-1)^2}{(1-\sqrt{t})^2}<t+8 \\ D_{f} \rightarrow x\ge-\dfrac{1}{2} \text{ and } x\ne 0 \\ \dfrac{\cancel{(\sqrt{t}-1)^2}(\sqrt{t}+1)^2}{\cancel{(1-\sqrt{t})^2}} < t+8 \\ t+1+2\sqrt{t}<t+8 \\ \sqrt{t}<\dfrac{7}{2} \implies t<\dfrac{49}{4} \\ \boxed{x<\dfrac{45}{8} } \\ \text{Possible values of } x = 1,2,3,4,5 \\ \text{ Answer :} \quad \dfrac{5\cdot 6}{2} = \color{royalblue}{\boxed{15}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...