The battle of 100

Algebra Level 2

x = 1 100 [ ( x + 1 ) 100 x 100 ] = ? \large{\sum^{100}_{x = 1} \left [ (x+1)^{100} - x^{100} \right] = \ ?}

10 1 100 1 101^{100} - 1 101 101 10 0 100 100^{100} 10 0 100 1 100^{100} - 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Oct 31, 2015

x = 1 100 ( ( x + 1 ) 100 x 100 ) = x = 1 100 ( x + 1 ) 100 x = 1 100 x 100 = x = 2 101 x 100 x = 1 100 x 100 = 10 1 100 1 100 = 10 1 100 1 \begin{aligned} \sum_{x=1}^{100} \left((x+1)^{100} - x^{100}\right) & = \sum_{\color{#3D99F6}{x=1}}^{\color{#3D99F6}{100}} (\color{#3D99F6}{x+1})^{100} - \sum_{x=1}^{100} x^{100} \\ & = \sum_{\color{#3D99F6}{x=2}}^{\color{#3D99F6}{101}} \color{#3D99F6}{x}^{100} - \sum_{x=1}^{100} x^{100} \\ & = 101^{100} - 1^{100} = \boxed{101^{100} - 1} \end{aligned}

i didn't understand

Adnan Malik - 5 years, 7 months ago

Log in to reply

Just expand the summations out then you should understand.

x = 1 100 ( ( x + 1 ) 100 x 100 ) = x = 1 100 ( x + 1 ) 100 x = 1 100 x 100 = 2 100 + 3 100 + 4 100 + . . . + 10 1 100 1 100 + 2 100 + 3 100 + . . . + 10 0 100 = 10 1 100 1 100 \begin{aligned} \sum_{x=1}^{100} \left((x+1)^{100} - x^{100}\right) & = \color{#3D99F6}{\sum_{x=1}^{100} (x+1)^{100}} - \color{#D61F06}{\sum_{x=1}^{100} x^{100}} \\ & = \color{#3D99F6}{2^{100}+3^{100}+4^{100}+...+101^{100}} - \color{#D61F06}{1^{100} + 2^{100}+3^{100}+...+100^{100}} \\ & = \color{#3D99F6}{101^{100}} - \color{#D61F06}{1^{100}} \end{aligned}

Chew-Seong Cheong - 5 years, 7 months ago

2 100 + 3 100 + . . . + 10 0 100 + 10 1 100 1 100 2 100 3 100 . . . 10 0 100 2^{100}+3^{100}+...+100^{100}+101^{100}-1^{100}-2^{100}-3^{100}-...-100^{100} 10 1 100 1 \boxed{101^{100}-1}

Adrianus Felix - 5 years, 7 months ago

Can you please make it a bit more simpler. Thanks in advance.

Debmeet Banerjee - 5 years, 7 months ago

Log in to reply

x = 1 100 ( ( x + 1 ) 100 x 100 ) = x = 1 100 ( x + 1 ) 100 x = 1 100 x 100 = 2 100 + 3 100 + 4 100 + . . . + 10 1 100 1 100 + 2 100 + 3 100 + . . . + 10 0 100 = 10 1 100 1 100 \begin{aligned} \sum_{x=1}^{100} \left((x+1)^{100} - x^{100}\right) & = \color{#3D99F6}{\sum_{x=1}^{100} (x+1)^{100}} - \color{#D61F06}{\sum_{x=1}^{100} x^{100}} \\ & = \color{#3D99F6}{2^{100}+3^{100}+4^{100}+...+101^{100}} - \color{#D61F06}{1^{100} + 2^{100}+3^{100}+...+100^{100}} \\ & = \color{#3D99F6}{101^{100}} - \color{#D61F06}{1^{100}} \end{aligned}

Chew-Seong Cheong - 5 years, 7 months ago

Log in to reply

Although I didn't understand, but thanks for making an effort.

Debmeet Banerjee - 5 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...