A calculus problem by Peter Orton

Calculus Level 2

Find x.

If x 0 + x 1 + x 2 + x 3 + x 4 + . . . . . . . = 2015 x^0 + x^1 + x^2 + x^3 + x^4 + ....... = 2015 .

If x = a a + 1 x = \frac{a}{a+1} . Find a a


The answer is 2014.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Peter Orton
Mar 5, 2015

x 0 + x 1 + x 2 + x 3 + x 4 + . . . . . . . = 2015 x^0 + x^1 + x^2 + x^3 + x^4 + ....... = 2015

= > 1 + x + x 2 + x 3 + x 4 + . . . . . . . = 2015 => 1 + x + x^2 + x^3 + x^4 + ....... = 2015

= > x + x 2 + x 3 + x 4 + . . . . . . . = 2014 => x + x^2 + x^3 + x^4 + ....... = 2014

= > x ( 1 + x + x 2 + x 3 + x 4 + . . . . . . . ) = 2014 => x(1+x + x^2 + x^3 + x^4 + ....... ) = 2014

But, 1 + x + x 2 + x 3 + x 4 + . . . . . . . = 2015 1 + x + x^2 + x^3 + x^4 + ....... = 2015

So, 2015 x = 2014 = > x = 2014 2015 2015x = 2014 => x = \frac{2014}{2015}

x = 2014 2014 + 1 = > a = 2014 x = \frac{2014}{2014+1} => a = 2014

Ahmed Essam
Mar 7, 2015

Aryan Gaikwad
Mar 5, 2015

2015 = x 0 + x 1 + x 2 + x 3 = 2015 = 1 + x + x 2 + x 3 2015={ x }^{ 0 }+{ x }^{ 1 }+{ x }^{ 2 }+{ x }^{ 3 }\dots=\\ 2015=1+x+{ x }^{ 2 }+{ x }^{ 3 }\dots

and

2015 x = 1 x + x + x 2 + x 3 \frac { 2015 }{ x } =\frac { 1 }{ x } +x+{ x }^{ 2 }+{ x }^{ 3 }\dots

On subtracting the two equations,

2015 2015 x = 1 x + 1 1 + x x + x 2 x 2 + x 3 x 3 = 2015 2015 x = 1 x 2015 x 2015 = 1 2015 x = 2014 x = 2014 2015 2015-\frac { 2015 }{ x } =-\frac { 1 }{ x } +1-1+x-x+{ x }^{ 2 }-{ x }^{ 2 }+{ x }^{ 3 }-{ x }^{ 3 }\dots =\\ 2015-\frac { 2015 }{ x } =-\frac { 1 }{ x } \\ 2015x-2015=-1\\ 2015x = 2014\\ x=\frac { 2014 }{ 2015 }

Given,

x = a a + 1 = x = 2014 2014 + 1 a = 2014 x=\frac { a }{ a+1 } =\\ x=\frac { 2014 }{ 2014+1 } \\ \therefore a=2014

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...