( 2 ± p r o b l e m ) x (2 \pm \sqrt{\mathfrak{problem}})^x

Algebra Level 3

Find the non-zero x x satisfying ( 2 3 ) x + ( 7 4 3 ) ( 2 + 3 ) x = 4 ( 2 3 ) . \large(2- \sqrt{3})^x+(7-4 \sqrt{3})(2+ \sqrt{3})^x=4(2- \sqrt{3}).


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rohit Udaiwal
May 20, 2016

Notice that 1 2 + 3 = 2 3 \frac{1}{2+\sqrt{3}}=2-\sqrt{3} and 7 4 3 = ( 2 3 ) 2 7-4\sqrt{3} =(2-\sqrt{3})^2 .Then we have ( 2 3 ) x + ( 7 4 3 ) ( 2 + 3 ) x = 4 ( 2 3 ) ( 2 3 ) x + 7 4 3 ( 2 3 ) x = 4 ( 2 3 ) ( 2 3 ) 2 x 4 ( 2 3 ) ( 2 3 ) x + 7 4 3 = 0 [ Multiplying both sides by ( 2 3 ) x ] a 2 4 ( 2 3 ) a + 7 4 3 = 0 [ where a = ( 2 3 ) x ] \begin{aligned} (2- \sqrt{3})^x+(7-4 \sqrt{3})(2+ \sqrt{3})^x & =4(2- \sqrt{3}) \\ \implies (2-\sqrt{3})^x+\frac{7-4\sqrt{3}}{(2-\sqrt{3})^x} & =4(2-\sqrt{3}) \\ \implies (2-\sqrt{3})^{2x}-4(2-\sqrt{3})(2-\sqrt{3})^x+7-4\sqrt{3} & = 0 \quad \quad [\text{Multiplying both sides by }~(2-\sqrt{3})^x] \\ \implies a^2-4(2-\sqrt{3})a+7-4\sqrt{3} & =0 \quad \quad [\text{where}~ a=(2-\sqrt{3})^x] \end{aligned} The above equation being a quadratic equation,has it roots given by the quadratic formula as a = 4 ( 2 3 ) ± { 4 ( 2 3 ) } 2 4 ( 7 4 3 ) 2 = 8 4 3 ± ( 2 3 7 4 3 ) 2 = 4 2 3 ± ( 2 3 3 ) [ ( 7 4 3 ) = ( 2 3 ) 2 ] a = 1 , ( 7 4 3 ) ( 2 3 ) = 1 , ( 2 3 ) 2 x = 0 , 2 \begin{aligned} a &= \frac{4(2-\sqrt{3})\pm\sqrt{\{4(2-\sqrt{3})\}^2-4(7-4\sqrt{3}})}{2} \\ & =\frac{8-4\sqrt{3}\pm(2\sqrt{3}\sqrt{7-4\sqrt{3}})}{2} \\ & =4-2\sqrt{3}\pm(2\sqrt{3}-3)\quad \quad [\because (7-4\sqrt{3})=(2-\sqrt{3})^2] \\ \implies a & =1,(7-4\sqrt{3}) \implies (2-\sqrt{3}) =1,(2-\sqrt{3})^2 \\ \therefore x & =\boxed{0,2} \end{aligned}

Hence,the only non-zero root is 2 \displaystyle \boxed{\color{#20A900}{2}} .

I totally did agree with your solution.. @Rohit Udaiwal .. +1 , but we can minimize the answer by rewriting the 3rd step and then solving further

( 2 3 ) x + ( 2 3 ) 2 x = 4 ( 2 3 ) ( 2 3 ) x 1 + ( 2 3 ) 1 x = 4 a = ( 2 3 ) x 1 a + 1 a = 4 a 2 4 a + 1 = 0 a = 4 ± 16 4 2 a = 2 ± 3 ( 2 3 ) x 1 = 2 3 , 1 2 3 x 1 = 1 or 1 x = 2 or 0 (2-\sqrt3)^x+(2-\sqrt3)^{2-x}=4(2-\sqrt3) \\ (2-\sqrt3)^{x-1}+(2-\sqrt3)^{1-x}=4 \\ a = (2-\sqrt3)^{x-1} \\ a+\dfrac1{a}=4 \\ a^2-4a+1=0 \\ a = \dfrac{4\pm\sqrt{16-4}}{2} \\ a=2\pm\sqrt3 \\ (2-\sqrt3)^{x-1} = 2-\sqrt3 , \dfrac{1}{2-\sqrt3} \\ x-1=1 \text{ or }-1 \\ \implies x=2 \text{ or } 0

Sabhrant Sachan - 5 years ago

Log in to reply

Better! Upvoted!

Rishik Jain - 5 years ago

Hello Sambhrant!I knew there would be a shorter/clearer method but I didn't bothered to find it;thanks for doing it.I believe you should post this a solution and I myself will upvote it.Great job :)

Rohit Udaiwal - 5 years ago

Log in to reply

Thank you! :)

Sabhrant Sachan - 5 years ago
Vilakshan Gupta
Mar 29, 2018

Just re-posting the solution given by @Sabhrant Sachan


( 2 3 ) x + ( 2 3 ) 2 x = 4 ( 2 3 ) ( 2 3 ) x 1 + ( 2 3 ) 1 x = 4 a = ( 2 3 ) x 1 a + 1 a = 4 a 2 4 a + 1 = 0 a = 4 ± 16 4 2 a = 2 ± 3 ( 2 3 ) x 1 = 2 3 , 1 2 3 x 1 = 1 or 1 x = 2 or 0 (2-\sqrt3)^x+(2-\sqrt3)^{2-x}=4(2-\sqrt3) \\ (2-\sqrt3)^{x-1}+(2-\sqrt3)^{1-x}=4 \\ a = (2-\sqrt3)^{x-1} \\ a+\dfrac1{a}=4 \\ a^2-4a+1=0 \\ a = \dfrac{4\pm\sqrt{16-4}}{2} \\ a=2\pm\sqrt3 \\ (2-\sqrt3)^{x-1} = 2-\sqrt3 , \dfrac{1}{2-\sqrt3} \\ x-1=1 \text{ or }-1 \\ \implies x=2 \text{ or } 0

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...