An algebra problem by Pishi Meow

Algebra Level 2

( a + b c ) 2 + ( b + c a ) 2 + ( c + a b ) 2 \left( \dfrac {a+b} c \right)^2 + \left( \dfrac {b+c} a \right)^2 + \left( \dfrac {c+a} b \right)^2

Given that a , b a,b and c c are positive real numbers, find then minimum value of the expression above.


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Mehul Chaturvedi
Jan 2, 2015

First by AM-GM ( a + b 2 c ) 2 + ( c + b 2 a ) 2 + ( a + c 2 b ) 2 3 ( ( a + b ) ( b + c ) ( c + a ) 8 a b c ) 2 3 \left( \dfrac { a+b }{ 2c } \right) ^{ 2 }+\left( \dfrac { c+b }{ 2a } \right) ^{ 2 }+\left( \dfrac { a+c }{ 2b } \right) ^{ 2 }\ge 3\quad \cdot \sqrt [ 3 ]{ \left( \dfrac { (a+b)(b+c)(c+a) }{ 8abc } \right) ^{ 2 } }

now we will prove that ( a + b ) ( b + c ) ( c + a ) 8 a b c (a+b)(b+c)(c+a)\geq 8abc

This is equivalent to a + b a b × c + b c b × a + c a c 2.2.2 \dfrac { a+b }{ \sqrt { ab } } \times \dfrac { c+b }{ \sqrt { cb } } \times \dfrac { a+c }{ \sqrt { ac } } \geq 2.2.2

By AM-GM the inequality holds only if a = b = c ( a + b ) ( b + c ) ( c + a ) 8 a b c a=b=c \therefore (a+b)(b+c)(c+a)\geq 8abc

( a + b 2 c ) 2 + ( c + b 2 a ) 2 + ( a + c 2 b ) 2 3 ( 8 a b c 8 a b c ) 2 3 ( a + b 2 c ) 2 + ( c + b 2 a ) 2 + ( a + c 2 b ) 2 3 × 1 \Rightarrow \left( \dfrac { a+b }{ 2c } \right) ^{ 2 }+\left( \dfrac { c+b }{ 2a } \right) ^{ 2 }+\left( \dfrac { a+c }{ 2b } \right) ^{ 2 }\ge 3\quad \cdot \sqrt [ 3 ]{ \left( \dfrac { 8abc }{ 8abc } \right) ^{ 2 } } \\ \Rightarrow \left( \dfrac { a+b }{ 2c } \right) ^{ 2 }+\left( \dfrac { c+b }{ 2a } \right) ^{ 2 }+\left( \dfrac { a+c }{ 2b } \right) ^{ 2 }\ge 3\times 1

So minimum value of ( a + b c ) 2 + ( c + b a ) 2 + ( a + c b ) 2 \left( \dfrac { a+b }{ c } \right) ^{ 2 }+\left( \dfrac { c+b }{ a } \right) ^{ 2 }+\left( \dfrac { a+c }{ b } \right) ^{ 2 } will be 3 × 4 3\times4

\therefore the answer is 12 \huge\boxed{\color{royalblue}{12}}

To prove ( a + b ) ( b + c ) ( c + a ) 8 a b c (a+b)(b+c)(c+a)\geq8abc , we can also expand and remove terms to get a 2 b + b 2 c + c 2 a + b 2 a + c 2 b + a 2 c 6 a b c a^2b+b^2c+c^2a+ b^2a+c^2b+a^2c \geq6abc which is then easily proven using AM-GM inequality

Jared Low - 6 years, 2 months ago
P C
Mar 12, 2016

Call the expression P, by Cauchy-Schwarz and AM-GM we have 3 A ( a b + b c + c a + a c + c b + b a ) 2 6 2 3A\geq \bigg(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{a}{c}+\frac{c}{b}+\frac{b}{a}\bigg)^2\geq 6^2 A 12 \Leftrightarrow A\geq 12 The equality holds when a = b = c a=b=c

Pishi Meow
Sep 20, 2014

using 3 variable AM-GM inequality you can observe that

c y c ( a + b 2 c ) 2 3 ( ( a + b ) ( b + c ) ( c + a ) 8 a b c ) 2 3 3 \sum\limits_{cyc} \left(\frac{a+b}{2c}\right)^2 \ge 3\sqrt[3]{\left(\frac{(a+b)(b+c)(c+a)}{8abc}\right)^2} \ge 3

where c y c \sum_{cyc} denotes sums over cyclic permutations of the symbols a , b , c a,b,c . also i used the well known inequality which states

( a + b ) ( b + c ) ( c + a ) 8 a b c (a+b)(b+c)(c+a)\ge 8abc

which can be proved using AM-GM inequality. so we proved minimum value of c y c ( a + b 2 c ) 2 \sum\limits_{cyc} \left(\frac{a+b}{2c}\right)^2 is 3 .So minimum value of c y c ( a + b c ) 2 \sum\limits_{cyc} \left(\frac{a+b}{c}\right)^2 will be 12.

Moreover, if you're using the AM-GM inequality, then you'll have to prove that the case of equality does exist. Or else, the minimum of x + 1 \sqrt x+1 would be 1 2 x 4 \frac12\sqrt[4]x whose minimum is 0 0 .

Kenny Lau - 6 years, 5 months ago

UGGH!!! I was so closee!!!!

A Former Brilliant Member - 6 years, 8 months ago

What if a = 1, b = 1 and c = -1? Then the sum seems to be as low as 4

Ujjwal Rane - 6 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...