An algebra problem by Rahil Sehgal

Algebra Level 2

There are 3 numbers in a geometric progression such that their sum is 13 and sum of their squares is 91. Find the largest number of that geometric progression.


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Mar 18, 2017

Let the geometric progression be { b r , b , b r } \left \{\dfrac br, b, br \right \} . Then we have:

{ b r + b + b r = b ( 1 r + 1 + r ) = 13 . . . ( 1 ) b 2 r 2 + b 2 + b 2 r 2 = b 2 ( 1 r 2 + 1 + r 2 ) = 91 . . . ( 2 ) \begin{cases} \dfrac br + b + br = b\left(\dfrac 1r+1+r\right) = 13 & ...(1) \\ \dfrac {b^2}{r^2} + b^2 + b^2r^2 = b^2\left(\dfrac 1{r^2}+1+r^2\right) = 91 & ...(2) \end{cases}

( 1 ) : b ( 1 r + 1 + r ) = 13 b ( 1 r + r ) + b = 13 b ( 1 r + r ) = 13 b Squaring both sides b 2 ( 1 r 2 + 2 + r 2 ) = 169 26 b + b 2 b 2 ( 1 r 2 + 1 + r 2 ) + b 2 = 169 26 b + b 2 Note that ( 2 ) : b 2 ( 1 r 2 + 1 + r 2 ) = 91 91 = 169 26 b 26 b = 78 b = 3 \begin{aligned} (1): \quad b\left(\frac 1r+1+r\right) & = 13 \\ b\left(\frac 1r+r\right) +b & = 13 \\ b\left(\frac 1r+r\right) & = 13 - b & \small \color{#3D99F6} \text{Squaring both sides} \\ b^2\left(\frac 1{r^2}+2+r^2\right) & = 169 - 26b + b^2 \\ {\color{#3D99F6}b^2\left(\frac 1{r^2}+1+r^2\right)} + b^2 & = 169 - 26b + b^2 & \small \color{#3D99F6} \text{Note that }(2): b^2\left(\frac 1{r^2}+1+r^2\right) = 91 \\ {\color{#3D99F6}91} & = 169 - 26b \\ 26b & = 78 \\ \implies b & = 3 \end{aligned}

Now, we have:

( 1 ) : b ( 1 r + 1 + r ) = 13 3 ( 1 r + 1 + r ) = 13 3 r + 3 + 3 r = 13 3 r 10 + 3 r = 0 Multiplying both sides by r 3 r 2 10 r + 3 = 0 ( 3 r 1 ) ( r 3 ) = 0 r = 3 , 1 3 \begin{aligned} (1): \quad b\left(\frac 1r+1+r\right) & = 13 \\ 3\left(\frac 1r+1+r\right) & = 13 \\ \frac 3r+3+3r & = 13 \\ \frac 3r-10+3r & = 0 & \small \color{#3D99F6} \text{Multiplying both sides by }r \\ 3r^2 - 10r + 3 & = 0 \\ (3r-1)(r-3) & = 0 \\ \implies r & = 3, \frac 13 \end{aligned}

Therefore, the geometric progression is { 1 , 3 , 9 } \{1, 3, 9\} . The largest number of the geometric progression is 9 \boxed{9} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...