An algebra problem by Rahil Sehgal

Algebra Level 4

i = 4 8 i 8 + 24 i 7 + 28 i 6 240 i 5 129 i 4 + 1280 i 3 + 32 i 2 672 i + 576 i 10 + 4 i 9 22 i 8 80 i 7 + 161 i 6 + 460 i 5 428 i 4 672 i 3 + 576 i 2 \sum_{i=4}^{8} \dfrac{i^8 + 24i^7 + 28i^6 -240i^5-129i^4+1280i^3+32i^2-672i+576}{i^{10}+4i^9-22i^8-80i^7+161i^6+460i^5-428i^4-672i^3+576i^2}

Find the value of the above expression to about 3 decimal places.

Inspiration


The answer is 1.7523.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rahil Sehgal
Apr 6, 2017

: i = 4 8 i 8 + 24 i 7 + 28 i 6 240 i 5 129 i 4 + 848 i 3 32 i 2 672 i + 576 i 10 + 4 i 9 22 i 8 80 i 7 + 161 i 6 + 460 i 5 428 i 4 672 i 3 + 576 i 2 \large \displaystyle \sum_{i=4}^{8} \dfrac{i^8 + 24i^7 + 28i^6 -240i^5-129i^4+848i^3-32i^2-672i+576}{i^{10}+4i^9-22i^8-80i^7+161i^6+460i^5-428i^4-672i^3+576i^2} i = 4 8 ( i 1 ) 2 ( i + 2 ) 2 ( i 3 ) 2 ( i + 4 ) 2 + i 2 ( i + 2 ) 2 ( i 3 ) 2 ( i + 4 ) 2 i 2 ( i 1 ) 2 ( i 3 ) 2 ( i + 4 ) 2 + i 2 ( i + 2 ) 2 ( i 1 ) 2 ( i + 4 ) 2 i 2 ( i + 2 ) 2 ( i 1 ) 2 ( i 3 ) 2 i 2 ( i 1 ) 2 ( i + 2 ) 2 ( i 3 ) 2 ( i + 4 ) 2 \Rightarrow \large \displaystyle \sum_{i=4}^8 \dfrac{ (i-1)^2(i+2)^2(i-3)^2 (i+4)^2 + i^2(i+2)^2(i-3)^2(i+4)^2 - i^2(i-1)^2(i-3)^2(i+4)^2 + i^2(i+2)^2(i-1)^2(i+4)^2 - i^2(i+2)^2(i-1)^2(i-3)^2}{i^2(i-1)^2(i+2)^2(i-3)^2 (i+4)^2}

This gives us i = 4 8 1 i 2 + 1 ( i 1 ) 2 1 ( i + 2 ) 2 + 1 ( i 3 ) 2 1 ( i + 4 ) 2 \Rightarrow \Rightarrow \large \displaystyle \sum_{i=4}^8 \dfrac{1}{i^2} + \dfrac{1}{(i-1)^2 } - \dfrac{1}{(i+2)^2} + \dfrac{1}{(i-3)^2} - \dfrac{1}{(i+4)^2}

On simplifying, it will give the answer 1.7523 \color{#D61F06}{ 1.7523 }

@Calvin Lin sir I think this problem should have a rating of Level 5

Rahil Sehgal - 4 years, 1 month ago

Log in to reply

Why? It's just a painful partial fraction summation. In fact, if you're allowed to use a calculator, you can just place the entire thing into the calculator, without having to simplify it.

There isn't any problem solving / understanding of the mathematics that is required to solve this problem.

In fact, I would prefer to delete this problem, as it is mostly a computational exercise.

Calvin Lin Staff - 4 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...