An algebra problem by Rahil Sehgal

Algebra Level 4

S = 1 1 × 2 + 1 3 × 4 + 1 5 × 6 + + 1 99 × 100 T = 1 51 × 100 + 1 52 × 99 + 1 53 × 98 + + 1 100 × 51 \begin{aligned} S & = \frac 1{1\times2} + \frac 1{3\times 4} + \frac 1{5 \times 6} + \cdots + \frac 1{99 \times 100} \\ T & = \frac 1{51 \times 100} + \frac 1{52 \times 99} + \frac 1{53 \times 98} + \cdots + \frac 1{100 \times 51} \end{aligned}

The 50-term sums S S and T T are defined as above. The ratio S T \dfrac ST can be expressed as m n \dfrac mn , where m m and n n are coprime positive integers. Find m + n m+n .


The answer is 153.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Relevant wiki: Telescoping Series - Sum

S = 1 1 × 2 + 1 3 × 4 + 1 5 × 6 + + 1 99 × 100 = k = 1 50 1 2 k ( 2 k 1 ) = k = 1 50 ( 1 2 k 1 1 2 k ) = k = 1 50 1 2 k 1 k = 1 50 1 2 k = 1 1 + 1 3 + 1 5 + . . . + 1 99 1 2 k = 1 50 1 k = ( 1 1 + 1 2 + 1 3 + . . . + 1 100 ) ( 1 2 + 1 4 + 1 6 + . . . + 1 100 ) 1 2 H 50 where H n is the n th harmonic number. = H 100 1 2 ( 1 1 + 1 2 + 1 3 + . . . + 1 50 ) 1 2 H 50 = H 100 H 50 \begin{aligned} S & = \frac 1{1\times2} + \frac 1{3\times 4} + \frac 1{5 \times 6} + \cdots + \frac 1{99 \times 100} \\ & = \sum_{k=1}^{50} \frac 1{2k(2k-1)} \\ & = \sum_{k=1}^{50} \left(\frac 1{2k-1} - \frac 1{2k} \right) \\ & = \sum_{k=1}^{50} \frac 1{2k-1} - \sum_{k=1}^{50} \frac 1{2k} \\ & = \frac 11 + \frac 13 + \frac 15 + ... + \frac 1{99} - \frac 12 \sum_{k=1}^{50} \frac 1k \\ & = \left(\frac 11 + \frac 12 + \frac 13 + ... + \frac 1{100}\right) - \left(\frac 12 + \frac 14 + \frac 16 + ... + \frac 1{100}\right) - \frac 12 \color{#3D99F6} H_{50} & \small \color{#3D99F6} \text{where }H_n \text{ is the }n^{\text{th}} \text{ harmonic number.} \\ & = H_{100} - \frac 12 \left(\frac 11 + \frac 12 + \frac 13 + ... + \frac 1{50}\right) - \frac 12 H_{50} \\ & = H_{100} - H_{50} \end{aligned}

T = 1 51 × 100 + 1 52 × 99 + + 1 99 × 52 + 1 100 × 51 = 2 ( 1 51 × 100 + 1 52 × 99 + + 1 74 × 77 + 1 75 × 76 ) = 2 k = 1 25 1 ( 50 + k ) ( 101 k ) = 2 151 k = 1 25 ( 1 50 + k + 1 101 k ) = 2 151 [ ( 1 51 + 1 52 + 1 53 + . . . + 1 75 ) + ( 1 100 + 1 99 + 1 98 + . . . + 1 76 ) ] = 2 151 ( H 100 H 50 ) = 2 151 S \begin{aligned} T & = \frac 1{51 \times 100} + \frac 1{52 \times 99} + \cdots + \frac 1{99 \times 52} + \frac 1{100 \times 51} \\ & = 2 \left( \frac 1{51 \times 100} + \frac 1{52 \times 99} + \cdots + \frac 1{74 \times 77} + \frac 1{75 \times 76} \right) \\ & = 2 \sum_{k=1}^{25} \frac 1 {(50+k)(101-k)} \\ & = \frac 2{151} \sum_{k=1}^{25} \left( \frac 1 {50+k} + \frac 1{101-k} \right) \\ & = \frac 2{151} \left[ \left( \frac 1{51} + \frac 1{52} + \frac 1{53} + ... + \frac 1{75} \right) + \left( \frac 1{100} + \frac 1{99} + \frac 1{98} + ... + \frac 1{76} \right) \right] \\ & = \frac 2{151} (H_{100} - H_{50}) \\ & = \frac 2{151}S \end{aligned}

S T = 151 2 m + n = 151 + 2 = 153 \implies \dfrac ST = \dfrac {151}2 \implies m + n = 151 + 2 = \boxed{153}

Salute your commitment to write such neat illustrative answers!

Siva Bathula - 4 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...