Try Something Different

Algebra Level 2

Given that f f is a function satisfying f f ( x x ) = 5 x 2 + 3 x 14 5x^{2} + 3x - 14 . Find the minimum value of f f .

Give your answer to 2 decimal places.


The answer is -14.45.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

5 x 2 + 3 x 14 = ( 5 x 3 2 5 ) 2 9 20 14 Perfecting square = ( 5 x 3 2 5 ) 2 14.45 Since ( 5 x 3 2 5 ) 2 0 5 x 2 + 3 x 14 14.45 \begin{aligned} \color{#3D99F6}{5x^2 + 3x} -14 & = \color{#3D99F6}{\left(\sqrt{5}x - \frac{3}{2\sqrt{5}} \right)^2 - \frac{9}{20}} - 14 \quad \quad \small \color{#3D99F6}{\text{Perfecting square}} \\ & = \color{#3D99F6}{\left(\sqrt{5}x - \frac{3}{2\sqrt{5}} \right)^2} - 14.45 \quad \quad \small \color{#3D99F6}{\text{Since }\left(\sqrt{5}x - \frac{3}{2\sqrt{5}} \right)^2 \ge 0} \\ \implies 5x^2 + 3x -14 & \ge \boxed{-14.45} \end{aligned}

Thank you. That's a great idea!

Raihan Fauzan - 5 years, 1 month ago
Raihan Fauzan
May 5, 2016

5 x 2 + 3 x 14 5x^{2} + 3x -14 can be formed as a x 2 + b x + c ax^{2} +bx + c with a a = 5, b b = 3, and c c = -14.

To find the minimum value, use the formula D 4 a \frac{-D}{4a} with D D = b 2 4 a c b^{2} -4ac .

D 4 a \frac{-D}{4a} = b 2 + 4 a c 4 a \frac{-b^{2} +4ac}{4a} = 3 2 + 4 × 5 × ( 14 ) 4 × 5 \frac{-3^2 + 4 \times 5 \times (-14)}{4 \times 5} = 289 20 \frac{-289}{20} = 14.45 \boxed{-14.45}

Roger Erisman
May 5, 2016

Factor: 5x^2 + 3x -14 = (5x -7) * (x + 2)

Zeroes are 1.4 and -2 so vertex is at (1.4-2)/2 = -0.3

5(-0.3)^2 + 3(-0.3) -14 = 0.45 - 0.9 -14 = -14.45

Alternatively:

Vertex is at -b/2a = -3/(2*5) = -0.3

f(-0.3) = - 14.45

Simple, and unique. Thanks

Raihan Fauzan - 5 years, 1 month ago
Hung Woei Neoh
May 7, 2016

Complete the square to find this:

f ( x ) = 5 x 2 + 3 x 14 = 5 ( x 2 + 3 5 x + ( 3 2 × 5 ) 2 ( 3 2 × 5 ) 2 ) 14 = 5 ( ( x + 3 10 ) 2 9 100 ) 14 = 5 ( x + 3 10 ) 2 45 100 14 = 5 ( x + 3 10 ) 2 14 45 100 f(x) = 5x^2 + 3x - 14\\ = 5 \left( x^2 + \dfrac{3}{5} x + \left( \dfrac{3}{2 \times 5} \right)^2 - \left( \dfrac{3}{2 \times 5} \right)^2 \right) - 14\\ = 5 \left( \left(x+\dfrac{3}{10} \right) ^2 - \dfrac{9}{100} \right) - 14\\ = 5 \left(x + \dfrac{3}{10} \right) ^2 - \dfrac{45}{100} - 14\\ =5 \left(x + \dfrac{3}{10} \right)^2 - 14\dfrac{45}{100}

From here, we know that the coordinates of the minimum point is ( 3 10 , 14 45 100 ) \left( -\dfrac{3}{10}, -14\dfrac{45}{100} \right) .

This means that the minimum value of f f is 14 45 100 = 14.45 -14\dfrac{45}{100} = \boxed{-14.45}

Cool! Thank you so much!

Raihan Fauzan - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...