An algebra problem by Raiyan FTb

Algebra Level 1

then what is the value of x+y

5 8 2 3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Sep 28, 2014

Of course, the solution can be obtained by substituting x x with 2 2 .

My working is as follows:

( x + y ) 2 = x 2 + 2 x y + y 2 (x+y)^2 = x^2 + 2xy + y^2

( x + y ) 2 = 4 + 2 x y . . . ( 1 ) \quad \Rightarrow (x+y)^2 = 4 + 2xy \quad ... (1)

( x 2 + y 2 ) ( x + y ) = x 3 + x y 2 + x 2 y + y 3 (x^2+y^2) (x+y) = x^3 + xy^2 + x^2y +y^3

4 ( x + y ) = 8 + x y ( x + y ) . . . ( 2 ) \quad \Rightarrow 4(x+y) = 8 + xy(x+y) \quad ... (2)

( 1 ) × ( x + y ) ( 2 ) × 2 : ( x + y ) 3 8 ( x + y ) = 4 ( x + y ) 16 (1) \times (x+y) - (2) \times 2: \quad (x+y)^3 - 8(x+y) = 4(x+y) - 16

( x + y ) 3 12 ( x + y ) + 16 = 0 \quad \Rightarrow (x+y)^3 - 12(x+y) + 16 = 0

Let u = x + y u = x+y ,

u 3 12 u + 16 = 0 . . . ( 3 ) \quad \Rightarrow u^3 -12u + 16= 0\quad ...(3)

( 3 ) : ( u 2 ) 2 ( u + 4 ) = 0 (3): \quad (u-2)^2(u+4) = 0

u = x + y = 2 \quad \Rightarrow u = x+y = \boxed{2} or x + y = 4 x +y = -4 .

Parth Lohomi
Sep 16, 2014

x 3 + y 3 x^{3}+y^{3} = ( x + y (x+y ) ( x 2 + y 2 x y ) (x^{2}+y^{2}-xy)

x 2 + y 2 = ( 4 x^{2}+y^{2}=(4

s o so

( x + y ) ( 4 x y ) (x+y)(4-xy) = 8 8

b y o p t i o n s o n l y by\ options\ only ( x + y ) (x+y) = 2 2

by dividing the two equations

((x^3)/(x^2))+((y^3)/(y^2))=8/4

x+y=2

This is incorrect/

Chew-Seong Cheong - 6 years, 8 months ago
Math Man
Sep 16, 2014

x = 2 y = 0 is clearly solution

x+y=2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...