An algebra problem by Razif FA

Algebra Level 3

log a b , log b c , log c d \log_a b , \log_b c , \log_c d

Given that the three positive integers above formed a geometric progression . If a = 2 a=2 and d = 128 d=128 , find the second term of this progression.

2 2 8 8 6 3 \sqrt[3]{6} 4 4 7 \sqrt7 7 3 \sqrt[3]{7} 6 \sqrt6 32 32

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hung Woei Neoh
Jun 13, 2016

Given that log a b , log b c , log c d \log_a b,\log_b c,\log_c d form a GP

r = log b c log a b = log c d log b c ( log b c ) 2 = ( log a b ) ( log c d ) ( log b c ) 2 = ( log a b ) ( log a d log a c ) ( log b c ) 2 ( log a c log a b ) = log a d ( log b c ) 2 ( log b c ) = log 2 128 ( log b c ) 3 = log 2 2 7 ( log b c ) 3 = 7 T 2 = log b c = 7 3 r=\dfrac{\log_b c}{\log_a b} = \dfrac{\log_c d}{\log_b c}\\ (\log_b c)^2 = (\log_a b)(\log_c d)\\ (\log_b c)^2 = (\log_a b)\left(\dfrac{\log_a d}{\log_a c}\right)\\ (\log_b c)^2 \left(\dfrac{\log_a c}{\log_a b}\right)= \log_a d\\ (\log_b c)^2(\log_b c) = \log_2 128\\ (\log_b c)^3 = \log_2 2^7\\ (\log_b c)^3 =7\\ T_2 = \log_b c = \boxed{\sqrt[3]{7}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...