Given that the three positive integers above formed a geometric progression . If and , find the second term of this progression.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Given that lo g a b , lo g b c , lo g c d form a GP
r = lo g a b lo g b c = lo g b c lo g c d ( lo g b c ) 2 = ( lo g a b ) ( lo g c d ) ( lo g b c ) 2 = ( lo g a b ) ( lo g a c lo g a d ) ( lo g b c ) 2 ( lo g a b lo g a c ) = lo g a d ( lo g b c ) 2 ( lo g b c ) = lo g 2 1 2 8 ( lo g b c ) 3 = lo g 2 2 7 ( lo g b c ) 3 = 7 T 2 = lo g b c = 3 7