An algebra problem by Richard Bao

Algebra Level 3

let 1 x + x = 1 \frac { 1 }{ x } +x = 1

what does 1 x 7 + x 7 \frac { 1 }{ { x }^{ 7 } } +{ x }^{ 7 }\quad equal?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Richard Bao
Jan 17, 2015

( 1 x + x = 1 ) x 6 r e t u r n s x 5 + x 7 = x 6 x 7 = x 6 x 5 n o w , s i n c e ( 1 x + x = 1 ) x 5 r e t u r n s x 6 = x 5 x 4 , x 7 = x 4 f o l l o w i n g t h i s m e t h o d , w e g e t t h a t x 4 = x 3 x 2 , a n d t h u s x 7 = x 3 + x 2 A g a i n , w e k n o w t h a t x 3 = x 2 x 1 , s o x 7 = x 1 T h e r e f o r e , 1 x 7 + x 7 = 1 (\frac { 1 }{ x } +x=1)\ast { x }^{ 6 }\quad returns\quad { x }^{ 5 }+{ x }^{ 7 }={ x }^{ 6 }\\ { x }^{ 7 }={ x }^{ 6 }-{ x }^{ 5 }\\ now,\quad since\quad (\frac { 1 }{ x } +x=1)\ast { x }^{ 5 }\quad returns\quad { x }^{ 6 }={ x }^{ 5 }-{ x }^{ 4 },\\ { x }^{ 7 }=-{ x }^{ 4 }\\ following\quad this\quad method,\quad we\quad get\quad that\quad { x }^{ 4 }={ x }^{ 3 }-{ x }^{ 2 },\quad and\quad thus\\ { x }^{ 7 }={ -x }^{ 3 }+{ x }^{ 2 }\\ Again,\quad we\quad know\quad that\quad { x }^{ 3 }={ x }^{ 2 }-{ x }^{ 1 },\quad so\\ { x }^{ 7 }={ x }^{ 1 }\\ Therefore,\quad \frac { { 1 } }{ { x }^{ 7 } } +{ x }^{ 7 }=1

Congratulations . Very different approach.

Niranjan Khanderia - 6 years, 4 months ago
Pranjal Jain
Jan 17, 2015

Solving the equation gives x = 1 + 3 2 = ω x=\dfrac{1+\sqrt{-3}}{2}=\omega

where ω \omega is the imaginary sixth root of unity.

So ω 6 = 1 \omega^6=1

ω 7 = ω × ω 6 = ω \omega^7=\omega×\omega^6=\omega

Or ω 7 + 1 ω 7 = ω + 1 ω = 1 \omega^7+\dfrac{1}{\omega^7}=\omega+\dfrac{1}{\omega}=1

( x + 1 / x ) 2 = 1 , x 2 + 1 / x 2 = 1 ( x 2 + 1 / x 2 ) 2 = 1 x 4 + 1 / x 4 = 1......... ( 1 ) ( x + 1 / x ) 3 = 1 x 3 + 1 / x 3 + 3 1 ( x + 1 / x ) = 1 x 3 + 1 / x 3 = 2..................... ( 2 ) ( 1 ) ( 2 ) x 7 + 1 / x 7 + ( x + 1 / x ) = 2 x 7 + 1 / x 7 = 1 (x+1/x)^2 =1, ~\therefore ~ x^2+1/x^2 = -1 \\(x^2+1/x^2)^2 =1 ~\therefore ~ x^4+1/x^4 = -1 .........(1)\\(x+1/x)^3 =1~\therefore ~ x^3+1/x^3 +3*1*(x +1 /x)= 1\\\implies~x^3+1/x^3= -2.....................(2) \\(1) * (2) \implies~x^7+1/x^7 +(x+1/x)=2\\\therefore ~ x^7+1/x^7=~~~~~~~~~~~ \boxed{\huge{1}}

Niranjan Khanderia - 6 years, 4 months ago
Lu Chee Ket
Jan 17, 2015

x^2 - x + 1 = 0

x = 1/ 2 + j Sqrt (3)/ 2 OR 1/ 2 - j Sqrt (3)/ 2

Since | x | = 1, only angle but not magnitude need to be considered.

Direct substitution need no binomial expansion.

Take either one of them example x = 1/ 2 + j Sqrt (3)/ 2,

x^7 = 1/ 2 - j Sqrt (3)/ 2 and (1/ x)^7 = (Conjugate x)^7 = 1/ 2 + j Sqrt (3)/ 2;

1/ x^7 + x^7 = 1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...