Easy exponents

Algebra Level 2

If A + B = C A+B=-C , which of the following is equal to 1 3 A 3 + 1 3 B 3 + 1 3 C 3 \dfrac13 A^3 + \dfrac13 B^3 + \dfrac13 C^3 .

A B C ABC C C A + B A+B None of the above A A A B + B C + A C AB+BC+AC

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Hung Woei Neoh
Jun 10, 2016

From Newton's sums, we know that

A 3 + B 3 + C 3 = ( A + B + C ) ( A 2 + B 2 + C 2 ) ( A B + A C + B C ) ( A + B + C ) + 3 A B C A^3+B^3+C^3 = (A+B+C)(A^2+B^2+C^2) - (AB+AC+BC)(A+B+C) + 3ABC

Given that A + B = C A + B + C = 0 A+B=-C \implies A+B+C=0

1 3 A 3 + 1 3 B 3 + 1 3 C 3 = 1 3 ( A 3 + B 3 + C 3 ) = 1 3 ( ( A + B + C ) ( A 2 + B 2 + C 2 ) ( A B + A C + B C ) ( A + B + C ) + 3 A B C ) = 1 3 ( ( 0 ) ( A 2 + B 2 + C 2 ) ( A B + A C + B C ) ( 0 ) + 3 A B C ) = 1 3 ( 3 A B C ) = A B C \dfrac{1}{3}A^3 +\dfrac{1}{3}B^3 + \dfrac{1}{3}C^3\\ =\dfrac{1}{3}(A^3+B^3+C^3)\\ =\dfrac{1}{3}\left((A+B+C)(A^2+B^2+C^2) - (AB+AC+BC)(A+B+C) + 3ABC\right)\\ =\dfrac{1}{3}\left((0)(A^2+B^2+C^2) - (AB+AC+BC)(0) + 3ABC\right)\\ =\dfrac{1}{3}(3ABC)\\ =\boxed{ABC}

Richard Ryan
Mar 24, 2016

(A+B)^{3}=-C^{3}

A^{3}+B^{3}+3AB(A+B)+C^{3}=0

A^{3}+B^{3}+C^{3}+3AB(-C)=0

A^{3}+B^{3}+C^{3}-3ABC=0

A^{3}+B^{3}+C^{3}=3ABC

1 3 \frac{1}{3} A^{3}+ 1 3 \frac{1}{3} B^{3}+ 1 3 \frac{1}{3} C^{3}= 1 3 \frac{1}{3} 3ABC

1 3 \frac{1}{3} A^{3}+ 1 3 \frac{1}{3} B^{3}+ 1 3 \frac{1}{3} C^{3}=ABC

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...