Unknown Catalan Number series!

Algebra Level 4

Let F ( x ) F(x) be a quartic polynomial that satisfy the F ( n ) = C n F(n) =C_ n , for n = 1 , 2 , 3 , 4 , 5 n=1,2,3,4,5 , where C n = ( 2 n ) ! n ! ( n + 1 ) ! C_n =\dfrac{(2n)!}{n! (n+1)!} denote the n th n^\text{th} Catalan number . Find F ( 6 ) + F ( 7 ) F(6) + F(7) .


The answer is 363.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishabh Jain
Jul 17, 2016

Method-1 \underline{\color{#007fff}{\textbf{Method-1}}}

The first five Catalan numbers for n = 1 , 2 , 3 , 4 , 5 n = 1, 2, 3 ,4,5 are 1 , 2 , 5 , 14 , 42 1, 2, 5, 14, 42 .

Using Polynomial Interpolation , F ( x ) = 42 ( x 1 ) ( x 2 ) ( x 3 ) ( x 4 ) 24 14 ( x 1 ) ( x 2 ) ( x 3 ) ( x 5 ) 6 + 5 ( x 1 ) ( x 2 ) ( x 4 ) ( x 5 ) 4 2 ( x 1 ) ( x 3 ) ( x 4 ) ( x 5 ) 6 + ( x 2 ) ( x 3 ) ( x 4 ) ( x 5 ) 24 F(x)=\dfrac{42(x-1)(x-2)(x-3)(x-4)}{24}-\dfrac{14(x-1)(x-2)(x-3)(x-5)}{6}+\dfrac{5(x-1)(x-2)(x-4)(x-5)}{4}-\dfrac{2(x-1)(x-3)(x-4)(x-5)}{6}+\dfrac{(x-2)(x-3)(x-4)(x-5)}{24}

Putting x = 6 x=6 and 7 7 respectively, we get F ( 6 ) = 111 , F ( 7 ) = 252 F(6)=111,F(7)=252 . Hence F ( 7 ) + F ( 6 ) = 252 + 111 = 363 F(7)+F(6)=252+111=\boxed{\color{#0C6AC7}{363}} .


Method-2 \underline{\color{#007fff}{\textbf{Method-2}}}

Using Method of Differences ,

n f ( n ) D 1 D 2 D 3 D 4 1 1 1 2 4 9 2 2 3 6 13 9 3 5 9 19 22 9 4 14 28 41 31 9 5 42 69 72 9 6 111 141 9 7 252 9 \begin{array}{c|c|c|c|c|c} n & f(n) & D_{1} & D_{2} & D_{3} & D_{4} \\\hline1 & 1 & 1& 2 & 4 & \color{#3D99F6}{9}\\\hline 2 & 2 & 3 & 6 & 13 & \color{#3D99F6}{9}\\\hline 3 & 5 & 9 & 19 & 22 & \color{#3D99F6}{9}\\\hline 4 & 14 & 28 & 41 & 31 & \color{#3D99F6}{9}\\\hline 5 & 42 & 69 & 72 & & \color{#3D99F6}{9}\\\hline \color{#D61F06}{6} & \color{#D61F06}{111} & 141 & & & \color{#3D99F6}{9} \\\hline \color{#20A900}{7} & \color{#20A900}{252} & & & & \color{#3D99F6}{9} \\\hline \end{array}

Hence,

f ( 6 ) + f ( 7 ) = 111 + 252 = 363 \color{#D61F06}{f(6)}+\color{#20A900}{f(7)}=\color{#D61F06}{111}+\color{#20A900}{252}=\boxed{\color{#0C6AC7}{363}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...