Geometry (2)

Geometry Level 3

If sin 4 x 2 + cos 4 x 3 = 1 5 \dfrac{\sin^4 x}2 + \dfrac{\cos^4 x}3 = \dfrac15 , find 2016 tan 2 x 2016\tan^2 x .


The answer is 1344.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jan 20, 2016

sin 4 x 2 + cos 4 x 3 = 1 5 15 sin 4 x + 10 cos 4 x = 6 15 ( 1 cos 2 x ) 2 + 10 cos 4 x = 6 15 ( 1 2 cos 2 x + cos 4 x ) + 10 cos 4 x = 6 25 cos 4 x 30 cos 2 x + 9 = 0 ( 5 cos 2 x 3 ) 2 = 0 cos 2 x = 3 5 sin 2 x = 1 cos 2 x = 1 3 5 = 2 5 2016 tan 2 x = 2016 × sin 2 x cos 2 x = 2016 × 2 3 = 1344 \begin{aligned} \frac{\sin^4 x}{2} + \frac{\cos^4 x}{3} & = \frac{1}{5} \\ 15\sin^4 x + 10\cos^4 x & = 6 \\ 15(1-\cos^2 x)^2 + 10\cos^4 x & = 6 \\ 15(1-2\cos^2 x + \cos^4 x) + 10\cos^4 x & = 6 \\ 25 \cos^4 x - 30 \cos^2 x + 9 & = 0 \\ (5 \cos^2 x - 3)^2 & = 0 \\ \Rightarrow \cos^2 x & = \frac{3}{5} \\ \Rightarrow \sin^2 x & = 1 - \cos^2 x = 1 - \frac{3}{5} = \frac{2}{5} \\ & \\ \Rightarrow 2016 \tan^2 x & = 2016 \times \frac{\sin^2 x}{\cos^2 x} \\ & = 2016 \times \frac{2}{3} \\ & = \boxed{1344} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...