You just find y y

Algebra Level 3

{ x + y + z = 243 5 x + 6 y + 7 z = 1456 \large \begin{cases} x+y+z = 243 \\ 5x+6y+7z =1456 \end{cases}

Positive integers x x , y y , and z z , where x > y > z > 78 x>y>z>78 , satisfy the system of equations above. Find y y .


The answer is 81.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Tom Engelsman
Feb 28, 2017

If one solves the above 2x3 linear system, the solution set is:

( x , y , z ) = ( 2 + k , 241 2 k , k ) ; k N . (x,y,z) = (2+k, 241-2k, k); k \in \mathbb{N}.

If we require x > y > z > 78 x > y > z > 78 , then we have:

2 + k > 241 2 k k > 239 3 79.67 2 + k > 241 - 2k \Rightarrow k > \frac{239}{3} \approx 79.67

241 2 k > k k < 241 3 80.33 241 - 2k > k \Rightarrow k < \frac{241}{3} \approx 80.33

Hence z = k = 80 z = k = 80 is the only positive integer solution that satisfies both inequalities. The desired solution is just y = 241 2 ( 80 ) = 81 . y = 241 - 2(80) = \boxed{81}.

x + y + z = 243 z = 243 x y x + y + z = 243 \Rightarrow z = 243 - x -y

Substitute z z into the second equation

5 x + 6 y + 7 ( 243 x y ) = 1456 5 x + 6 y + 1701 7 x 7 y = 1456 2 x + y = 245 x + x + y = 245 x + y = 243 z x + 243 z = 245 x z = 2 x = z + 2 x + y + z = 243 2 z + y = 241 y = 241 2 z \begin{aligned} 5x + 6y + 7(243-x-y) & = 1456 \\ 5x+ 6y+ 1701 -7x-7y & = 1456 \\ 2x + y & = 245 \\ x + \color{#D61F06} x+ y \color{#333333} & = 245 \quad \color{#3D99F6} \Rightarrow x+y = 243-z\\ x +243 - z & = 245 \\ x -z & = 2 \quad \Rightarrow \color{#20A900} x= z+2 \\ x+ y+ z & = 243 \\ 2z + y & = 241 \\ y & = 241-2z \end{aligned}

Now, since x > y > z > 78 x>y>z>78 , we can do something with those inequalities.

x > y 2 + z > 241 2 z 3 z > 239 z > 79.67 \begin{aligned} x & > y \\ 2+ z & > 241- 2z \\ 3z & > 239 \quad \Rightarrow z > 79.67 \end{aligned}

Another inequation,

y > z 241 2 z > z 3 z < 241 z < 80.33 \begin{aligned} y & > z \\ 241-2z & > z \\ 3z & < 241 \quad \Rightarrow z<80.33 \end{aligned}

Now, we have 79.67 < z < 80.33 79.67 <z< 80.33 . Since z z is an integer, we have z = 80 z= 80 , which leads us to find that x = 82 x= 82 and y = 81 y= \boxed{81} .

Skye Rzym
Mar 11, 2017

Suppose that A = x + y + z = 243 A=x+y+z=243 B = 5 x + 6 y + 7 z = 1456 B=5x+6y+7z=1456 Then, we get 6 A B = 6 ( x + y + z ) ( 5 x + 6 y + 7 z ) = 6.243 1456 6A-B=6(x+y+z)-(5x+6y+7z)=6.243-1456 6 A B = x z = 1458 1456 6A-B=x-z=1458-1456 6 A B = x z = 2 6A-B=x-z=2 6 A B = x = 2 + z 6A-B=x=2+z Because x x , y y , and z z are positive integers and x > y > z x>y>z . We can conclude that x x , y y , and z z are consecutive positive integers Where y = z + 1 y=z+1 so x + y + z = z + 2 + z + 1 + z = 243 x+y+z=z+2+z+1+z=243 3 z = 240 3z=240 z = 80 z=80 z + 1 = 81 z+1=81 y = 81 y=81

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...