⎩ ⎨ ⎧ x + y + z = 2 4 3 5 x + 6 y + 7 z = 1 4 5 6
Positive integers x , y , and z , where x > y > z > 7 8 , satisfy the system of equations above. Find y .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
x + y + z = 2 4 3 ⇒ z = 2 4 3 − x − y
Substitute z into the second equation
5 x + 6 y + 7 ( 2 4 3 − x − y ) 5 x + 6 y + 1 7 0 1 − 7 x − 7 y 2 x + y x + x + y x + 2 4 3 − z x − z x + y + z 2 z + y y = 1 4 5 6 = 1 4 5 6 = 2 4 5 = 2 4 5 ⇒ x + y = 2 4 3 − z = 2 4 5 = 2 ⇒ x = z + 2 = 2 4 3 = 2 4 1 = 2 4 1 − 2 z
Now, since x > y > z > 7 8 , we can do something with those inequalities.
x 2 + z 3 z > y > 2 4 1 − 2 z > 2 3 9 ⇒ z > 7 9 . 6 7
Another inequation,
y 2 4 1 − 2 z 3 z > z > z < 2 4 1 ⇒ z < 8 0 . 3 3
Now, we have 7 9 . 6 7 < z < 8 0 . 3 3 . Since z is an integer, we have z = 8 0 , which leads us to find that x = 8 2 and y = 8 1 .
Suppose that A = x + y + z = 2 4 3 B = 5 x + 6 y + 7 z = 1 4 5 6 Then, we get 6 A − B = 6 ( x + y + z ) − ( 5 x + 6 y + 7 z ) = 6 . 2 4 3 − 1 4 5 6 6 A − B = x − z = 1 4 5 8 − 1 4 5 6 6 A − B = x − z = 2 6 A − B = x = 2 + z Because x , y , and z are positive integers and x > y > z . We can conclude that x , y , and z are consecutive positive integers Where y = z + 1 so x + y + z = z + 2 + z + 1 + z = 2 4 3 3 z = 2 4 0 z = 8 0 z + 1 = 8 1 y = 8 1
Problem Loading...
Note Loading...
Set Loading...
If one solves the above 2x3 linear system, the solution set is:
( x , y , z ) = ( 2 + k , 2 4 1 − 2 k , k ) ; k ∈ N .
If we require x > y > z > 7 8 , then we have:
2 + k > 2 4 1 − 2 k ⇒ k > 3 2 3 9 ≈ 7 9 . 6 7
2 4 1 − 2 k > k ⇒ k < 3 2 4 1 ≈ 8 0 . 3 3
Hence z = k = 8 0 is the only positive integer solution that satisfies both inequalities. The desired solution is just y = 2 4 1 − 2 ( 8 0 ) = 8 1 .