Summation this Summer!

Algebra Level 3

1 ( 1 + x ) ( 1 + 2 x ) + 1 ( 1 + 2 x ) ( 1 + 3 x ) + 1 ( 1 + 3 x ) ( 1 + 4 x ) + \large \dfrac{1}{(1+x)(1+2x)}+\dfrac{1}{(1+2x)(1+3x)}+\dfrac{1}{(1+3x)(1+4x)} + \cdots

Find the closed form of the sum of the series above up to n n terms.

n ( 1 + x ) [ 1 + ( n 2 + 1 ) x ] \frac{n}{(1+x)[1+(n^2+1)x]} n ( 1 + x ) [ 1 + ( n + 1 ) x ] \frac{n}{(1+x)[1+(n+1)x]} n + 1 ( 1 + x ) [ 1 + ( n + 1 ) x ] \frac{n+1}{(1+x)[1+(n+1)x]} n 2 ( 1 + x ) [ 1 + ( n + 1 ) x ] \frac{n^2}{(1+x)[1+(n+1)x]}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aditya Dhawan
Apr 7, 2016

Relevant wiki: Telescoping Series - Sum

T h e g i v e n s e r i e s i s e q u i v a l e n t t o : k = 1 n 1 [ 1 + k x ] [ 1 + ( k + 1 ) x ] = 1 x 1 + ( 1 + k ) x [ 1 + k x ] [ 1 + k x ] [ 1 + ( k + 1 ) x ] = 1 x 1 1 + k x 1 1 + ( k + 1 ) x ( T E L E S C O P I N G S E R I E S ) = 1 x ( 1 x + 1 1 1 + ( n + 1 ) x ) = n ( x + 1 ) ( 1 + ( n + 1 ) x ) The\quad given\quad series\quad is\quad equivalent\quad to:\\ \sum _{ k=1 }^{ n }{ \frac { 1 }{ [1+kx][1+(k+1)x] } } \\ =\frac { 1 }{ x } \sum { \frac { 1+(1+k)x-[1+kx] }{ [1+kx][1+(k+1)x] } } \\ =\frac { 1 }{ x } \sum { \frac { 1 }{ 1+kx } } -\frac { 1 }{ 1+(k+1)x } \quad (TELESCOPING\quad SERIES)\\ =\frac { 1 }{ x } \left( \frac { 1 }{ x+1 } -\quad \frac { 1 }{ 1+(n+1)x } \right) =\frac { n }{ (x+1)(1+(n+1)x) } \\

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...