An algebra problem by Sai Venkatesh

Algebra Level 2

Given that a , b a,b and c c are real numbers such that a + b + c = 0 a+b+c=0 , compute 1 b 2 + c 2 a 2 + 1 c 2 + a 2 b 2 + 1 a 2 + b 2 c 2 . \frac { 1 }{ { b }^{ 2 }+{ c }^{ 2 }-{ a }^{ 2 } } +\frac { 1 }{ { c }^{ 2 }+{ a }^{ 2 }-{ b }^{ 2 } } +\frac { 1 }{ { a }^{ 2 }+{ b }^{ 2 }-{ c }^{ 2 } }.


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

It is given that a + b + c = 0 a = ( b + c ) , b = ( c + a ) , c = ( a + b ) a+b+c=0\quad \Rightarrow a = - (b+c), b=-(c+a), c = -(a+b) .

Now consider b 2 + c 2 a 2 = b 2 + c 2 [ ( b + c ) ] 2 = b 2 + c 2 ( b 2 + 2 b c + c 2 ) = b c b^2+c^2-a^2 = b^2+c^2 - [-(b+c)]^2 = b^2+c^2 - (b^2+2bc+c^2) = -bc .

Therefore,

1 b 2 + c 2 a 2 + 1 c 2 + a 2 b 2 + 1 a 2 + b 2 c 2 = 1 2 b c 1 2 c a 1 2 a b \dfrac {1}{b^2+c^2-a^2 } + \dfrac {1}{c^2+a^2-b^2 } + \dfrac {1}{a^2+b^2-c^2 } = - \dfrac {1}{2bc} - \dfrac {1}{2ca} - \dfrac {1}{2ab}

= 1 2 ( 1 b c + 1 c a + 1 a b ) = 1 2 ( a + b + c a b c ) = 1 2 ( 0 a b c ) = 0 = - \dfrac {1}{2} \left( \dfrac {1}{bc} + \dfrac {1}{ca} + \dfrac {1}{ab} \right) = - \dfrac {1}{2} \left( \dfrac {a+b+c}{abc} \right) = - \dfrac {1}{2} \left( \dfrac {0}{abc} \right) = \boxed{0}

Mitali Mohile
Aug 17, 2014

a+b+c=0 therefore a, b and c=0 so 1/0+1/0+1/0=0

G i v e n a + b + c = 0. a = ( b + c ) . a 2 = b 2 + c 2 + 2 b c . . . ( 1 ) N o w , b 2 + c 2 a 2 = b 2 + c 2 ( b 2 + c 2 + 2 b c ) . . . . [ S u b s t i t u t i n g t h e v a l u e o f a f r o m ( 1 ) b 2 + c 2 a 2 = 2 b c . S i m i l a r y f o r t h e o t h e r t w o e x p r e s s i o n s . [ ( c 2 + a 2 b 2 ) & ( a 2 + b 2 c 2 ) ] . N o w , 1 b 2 + c 2 a 2 + 1 c 2 + a 2 b 2 + 1 a 2 + b 2 c 2 = ( 1 2 b c 1 2 a c 1 2 a b ) . ( a 2 a b c + b 2 a b c + c 2 a b c ) = 0. Given\quad a+b+c=0.\\ \Rightarrow a=-(b+c).\\ { \Rightarrow a }^{ 2 }={ b }^{ 2 }+{ c }^{ 2 }+2bc\quad ...(1)\\ Now,\\ { b }^{ 2 }+{ c }^{ 2 }{ -a }^{ 2 }={ b }^{ 2 }+{ c }^{ 2 }-({ b }^{ 2 }{ +c }^{ 2 }+2bc).\quad \quad ...[Substituting\quad the\quad value\quad of\quad a\quad from\quad (1)\\ \Rightarrow { b }^{ 2 }+{ c }^{ 2 }{ -a }^{ 2 }=\quad -2bc.\\ Similary\quad for\quad the\quad other\quad two\quad expressions.\quad [({ c }^{ 2 }{ +a }^{ 2 }{ -b }^{ 2 })\quad \& \quad ({ a }^{ 2 }{ +b }^{ 2 }{ -c }^{ 2 })].\\ \\ Now,\\ \frac { 1 }{ { b }^{ 2 }+{ c }^{ 2 }{ -a }^{ 2 } } +\frac { 1 }{ { c }^{ 2 }{ +a }^{ 2 }{ -b }^{ 2 } } +\frac { 1 }{ { a }^{ 2 }{ +b }^{ 2 }{ -c }^{ 2 } } =\quad -(\frac { 1 }{ 2bc } \frac { 1 }{ 2ac } \frac { 1 }{ 2ab } ).\\ \Rightarrow -(\frac { a }{ 2abc } +\frac { b }{ 2abc } +\frac { c }{ 2abc } )=0.

Soummo Mukherjee - 6 years, 10 months ago

Log in to reply

Excellent. Why don't you post this as a solution here?

Krishna Ar - 6 years, 9 months ago

Log in to reply

exactly your solution is more accurate.

Mardokay Mosazghi - 6 years, 9 months ago

Exactly the same way Bro.

Kushagra Sahni - 6 years, 9 months ago

1/0=infinite....not zero

Saikarthik Bathula - 6 years, 9 months ago

a+b+c=0 therefore a,b and c=0 so 1/0+1/0+1/0=0

mitali mohile - 6 years, 10 months ago

Log in to reply

No its wrong because 1/0 is not defined. And also a, b, c are not necessarily =0. Only their sum is 0.

Kushagra Sahni - 6 years, 9 months ago

Log in to reply

Exactly a+b+c=0 always doesnt mean a,b & c are also 0. They may be negative integers

Satyajit Ghosh - 6 years, 9 months ago

mitali ur answer is write but steps are wrong any number by 0 is undefined

Sai Venkatesh - 6 years, 10 months ago
Mhar Ariz Marino
Dec 8, 2014

add the fractions. it will leave you with an a+b+c numerator which means 0. therefore the fraction is 0.

Deepthi Prakash
Aug 22, 2014

a+b+c=0 = 0+0+0=0 0square is 0 (1/0)+(1/0)+(1/0)=0

is this right sai venkatesh?

deepthi prakash - 6 years, 9 months ago

a+b+c=0...therefore...(a+b)^2 =c^2....=> a^2+b^2=c^2 -2ab.........therefore manipulating it you get it as zero...

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...