A geometry problem by Sabhrant Sachan

Geometry Level 2

8 1 sin 2 x + 8 1 cos 2 x = 30 \large 81^{\sin^2 x} + 81^{\cos ^2 x} = 30

Which of the following values is a possible value of x x satisfying the equation above?

π 4 \dfrac{\pi}4 π 3 \dfrac{\pi}3 π 2 \dfrac{\pi}2 π 15 \dfrac{\pi}{15} 7 π 18 \dfrac{7\pi}{18} 5 π 18 \dfrac{5\pi}{18}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sabhrant Sachan
May 1, 2016

Multiply Both sides by 8 1 c o s 2 x 8 1 s i n 2 x + c o s 2 x + 8 1 2 c o s 2 x = 30 × 8 1 c o s 2 x = 81 + 8 1 2 c o s 2 x = 30 × 8 1 c o s 2 x Put 8 1 c o s 2 x = y 81 + y 2 = 30 y = y 2 30 y + 81 = 0 = y 2 27 y 3 y + 81 = 0 = ( y 27 ) ( y 3 ) = 0 8 1 c o s 2 x = 27 , 3 = 3 4 c o s 2 x = 3 3 , 3 1 c o s 2 x = 3 4 , 1 4 x = π 6 , π 3 \text {Multiply Both sides by } 81^{cos^2x} \\ \implies 81^{sin^2x+cos^2x}+81^{2cos^2x}=30\times81^{cos^2x}\\ = 81+81^{2cos^2x}=30\times81^{cos^2x}\\ \text {Put } 81^{cos^2x}=y \\ \implies 81+y^2=30y \\ =y^2-30y+81=0 \\= y^2-27y-3y+81=0\\ = (y-27)(y-3)=0 \\\implies 81^{cos^2x}=27,3 \\ = 3^{4cos^2x}=3^3,3^1\\ cos^2x=\dfrac34,\dfrac14\\ x=\dfrac{\pi}6,\boxed{\dfrac{\pi}3}

Pretty much got the same solution, except I replaced sin(x) with 1 - cos^2(x) and performed the same substitution after...

Jiahui Tan - 1 year, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...