An algebra problem by Saurabh Patil

Algebra Level 4

2 + 6 4 100 + 2 + 2 ( 6 ) 4 99 + 2 + 3 ( 6 ) 4 98 + + 2 + 99 ( 6 ) 4 2 + 2 + 100 ( 6 ) 4 \dfrac{2 + 6}{4^{100}} + \dfrac{2 + 2(6)}{4^{99}} + \dfrac{2 + 3(6)}{4^{98}} + \cdots + \dfrac{2 + 99(6)}{4^{2}} + \dfrac{2 + 100(6)}{4}

Let S S denote the value of the expression above. Find 3 S 3S .


The answer is 600.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 28, 2017

Relevant wiki: Arithmetic-Geometric Progression

S = 2 + 6 4 100 + 2 + 2 ( 6 ) 4 99 + 2 + 3 ( 6 ) 4 98 + + 2 + 99 ( 6 ) 4 2 + 2 + 100 ( 6 ) 4 = 1 4 100 ( ( 2 + 6 ) + ( 2 + 2 ( 6 ) ) 4 + ( 2 + 3 ( 6 ) ) 4 2 + + ( 2 + 100 ( 6 ) ) 4 99 ) = 1 4 100 ( 2 n = 0 99 4 n + 6 n = 1 100 n 4 n 1 ) GP and AGP = 1 4 100 ( 2 4 100 1 4 1 + 6 ( 1 100 ( 4 100 ) 1 4 + 4 ( 1 4 99 ) ( 1 4 ) 2 ) ) = 200 \begin{aligned} S & = \frac {2+6}{4^{100}} + \frac {2+2(6)}{4^{99}} + \frac {2+3(6)}{4^{98}} + \cdots + \frac {2+99(6)}{4^2} + \frac {2+100(6)}4 \\ & = \frac 1{4^{100}} \left((2+6)+(2+2(6))4 + (2+3(6))4^2 + \cdots + (2+100(6))4^{99} \right) \\ & = \frac 1{4^{100}} \left(2 {\color{#3D99F6}\sum_{n=0}^{99} 4^n} + 6{\color{#D61F06}\sum_{n=1}^{100} n \cdot 4^{n-1}} \right) & \small {\color{#3D99F6}\text{GP}} \text{ and } \color{#D61F06} \text{AGP} \\ & = \frac 1{4^{100}} \left(2 \cdot {\color{#3D99F6}\frac {4^{100}-1}{4-1}} + 6 {\color{#D61F06}\left(\frac {1-100(4^{100})}{1-4} + \frac {4(1-4^{99})}{(1-4)^2}\right)} \right) \\ & = 200 \end{aligned}

3 S = 600 \implies 3S = \boxed{600}

Ayush Sharma
Jul 14, 2017

Simple write general term and apply sumation you will get one AGP AND ONE GP solve them both and you get your answer

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...