An algebra problem by Saurav Pal

Algebra Level 2

If

x = 4 ( 5 + 1 ) ( 5 4 + 1 ) ( 5 8 + 1 ) ( 5 16 + 1 ) , x=\frac{4}{\big(\sqrt{5}+1\big)\big(\sqrt[4]{5}+1\big)\big(\sqrt[8]{5}+1\big)\big(\sqrt[16]{5}+1\big)},

then what is the value of ( 1 + x ) 48 ? (1+x)^{48}?

25 125 625 5

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Parth Lohomi
Apr 15, 2015

We note that in general,

5 2 n + 1 ) ( 5 2 n 1 ) = ( 5 2 n ) 2 1 2 = 5 2 n 1 1 \sqrt[2^n]{5} + 1)(\sqrt[2^n]{5} - 1) = (\sqrt[2^n]{5})^2 - 1^2 = \sqrt[2^{n-1}]{5} - 1 .

It now becomes apparent that if we multiply the numerator and denominator of 4 ( 5 + 1 ) ( 5 4 + 1 ) ( 5 8 + 1 ) ( 5 16 + 1 ) \dfrac{4}{ (\sqrt{5}+1) (\sqrt[4]{5}+1) (\sqrt[8]{5}+1) (\sqrt[16]{5}+1) } by ( 5 16 1 ) (\sqrt[16]{5} - 1) , the denominator will telescope to 5 1 1 = 4 \sqrt[1]{5} - 1 = 4 , so

x = 4 ( 5 16 1 ) 4 = 5 16 1 x = \dfrac{4(\sqrt[16]{5} - 1)}{4} = \sqrt[16]{5} - 1

It follows that ( x + 1 ) 48 = ( 5 16 ) 48 = 5 3 = 125 (x + 1)^{48} = (\sqrt[16]5)^{48} = 5^3 = \boxed{125}

Ye hui na baat.

Saurav Pal - 6 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...