A right substitution

Algebra Level 5

( x + 1 x ) 2 + ( x 2 + 1 x 2 ) 2 + + ( x 1000 + 1 x 1000 ) 2 \left ( x + \frac 1 x \right )^2 + \left ( x^2 + \frac 1 {x^2} \right )^2 + \ldots + \left ( x^{1000} + \frac 1 {x^{1000}} \right )^2

What is the value of the expression above if x 2 + x + 1 = 0 x^2 + x+ 1 = 0 ?


The answer is 1999.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

L e t f ( n ) = x n + 1 x n . I f x 2 + x + 1 = 0 , w e h a v e A = f ( n 1 ( m o d 3 ) ) = 1 , B = f ( n 2 ( m o d 3 ) ) = 1 C = f ( n 0 ( m o d 3 ) ) = 2. A 2 + B 2 + C 2 = 1 + 1 + 4 = 6 1000 = 333 3 + 1. { ( x + 1 x ) 2 + ( x 2 + 1 x 2 ) 2 + ( x 3 + 1 x 3 ) 2 } + { ( x 4 + 1 x 4 + ) 2 + ( x 5 + 1 x 5 ) 2 + ( x 6 + 1 x 6 + ) 2 } + ( x 1000 + 1 x 1000 ) 2 = ( A 2 + B 2 + C 2 ) + ( A 2 + B 2 + C 2 ) + . . . . . + A 2 = 333 6 + 1 = 1999. \large Let {\huge f}(n)= x^n + \dfrac 1 x^n.~~~If~x^2 + x+ 1 = 0,~~we~have~\\\large A={\huge f}\left (~~ n\equiv 1 \pmod3 ~~~\right )=-1 ,\\\large B= {\huge f}\left (~~n\equiv 2 \pmod3~~\right )=-1\\\large C={\huge f}\left (~~n\equiv 0 \pmod3~~\right )=2.\\\therefore A^2+B^2+C^2=1+1+4=6 \\~~\\ 1000=333*3+1.\\ \left \{~~ \left ( x + \frac 1 x \right )^2 + \left ( x^2 + \frac 1 {x^2} \right )^2 + \left ( x^3 + \frac 1 {x^3} \right )^2~~\right \} +\\ \left \{ \left ( x^4 + \frac 1 {x^4} +\right )^2+ \left ( x^5 + \frac 1 {x^5} \right )^2 + \left ( x^6 + \frac 1 {x^6} +\right )^2 \right \} \ldots + \left ( x^{1000} + \frac {1} {x^{1000}} \right )^2\\=(A^2+B^2+C^2)+(A^2+B^2+C^2)+.....+A^2\\=333*6+1=1999.

Chew-Seong Cheong
Apr 20, 2015

Showing the solution suggested by Miraj Shah .

If x 2 + x + 1 = 0 x 3 + x 2 + x = 0 x 3 + x 2 + x + 1 = 1 x^2+x+1=0\quad \Rightarrow x^3+x^2+x =0 \quad \Rightarrow x^3+x^2+x + 1 = 1 x 3 = 1 \Rightarrow x^3 = 1 . Therefore, x x is the cubic root of 1 1 .

x 3 = 1 = e 2 π i x = e 2 π 3 i = cos 2 π 3 + i sin 2 π 3 \Rightarrow x^3 = 1 = e^{2\pi i} \quad \Rightarrow x = e^{\frac{2\pi}{3} i} = \cos{\frac{2\pi}{3}} + i\sin{\frac{2\pi}{3}}

k = 1 1000 ( x k + 1 x k ) 2 = k = 1 1000 ( e 2 k π 3 i + e 2 k π 3 i ) 2 = k = 1 1000 ( 2 cos 2 k π 3 ) 2 = k = 1 1000 4 cos 2 2 k π 3 = 4 ( 1 4 + 1 4 + 1 + 1 4 + 1 4 + 1 + . . . + 1 4 + 1 + 1 4 ) = 4 ( 333 [ 1 4 + 1 4 + 1 ] + 1 4 ) = 333 ( 6 ) + 1 = 1999 \begin{aligned} \Rightarrow \displaystyle \sum_{k=1}^{1000} {\left(x^k+\dfrac{1}{x^k}\right)^2} & = \sum_{k=1}^{1000} {\left(e^{\frac{2k\pi}{3}i} +e^{-\frac{2k\pi}{3}i} \right)^2} = \sum_{k=1}^{1000} {\left(2\cos{\frac{2k\pi}{3}} \right)^2} \\ & = \sum_{k=1}^{1000} {4\cos^2{\frac{2k\pi}{3}}} \\ & = 4 \left( \frac{1}{4} + \frac{1}{4} + 1 + \frac{1}{4} + \frac{1}{4} + 1 + ...+ \frac{1}{4} + 1 + \frac{1}{4} \right) \\ & = 4 \left( 333\left[ \frac{1}{4} + \frac{1}{4} + 1\right] + \frac{1}{4} \right)\\ & = 333(6)+1 = \boxed{1999} \end{aligned}

Saurav Pal
Apr 11, 2015

x 2 + x + 1 = 0 x^{2}+x+1=0 \Rightarrow x = ω x=\omega . \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ( x + 1 x ) 2 + ( x 2 + 1 x 2 ) 2 + . . . . . . . . . . + ( x 1000 + 1 x 1000 ) 2 = ( 1 + 1 + 4 ) + ( 1 + 1 + 4 ) + . . . . . . . . (x+\frac{1}{x})^{2}+(x^{2}+\frac{1}{x^{2}})^{2}+. . . . . . . . . .+(x^{1000}+\frac{1}{x^{1000}})^{2}=(1+1+4)+(1+1+4)+ . . . . . . . . (333 times) + 1 = 6 × 333 + 1 = 1999 +1=6\times333+1=\boxed{1999} .

Easy peasy ^o^

Shubhendra Singh - 6 years, 2 months ago

Have you cleared iit you are in allen

Ram Sita - 3 years, 8 months ago

Actually it is just the point of x^4=x^2+2x+1=x,
that means x^3=1, and expand the expression and one part will become (x^2+1+x)+ (x^2+1+x)+( x^2+1+x)+......+(x^2+1+x)+x^2=x^2; another part is 1/(x^2); the rest are just 2000; so totally it is x^2+1/x^2+2000=1999

lol, you guys think of it with a complex way but sometimes simpleness is beauty but sometimes complexity is also beauty that is math

Miraj Shah
Apr 14, 2015

The above equation's roots are nothing but complex cube root of 1. This info can be used to solve the question even faster

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...