An algebra problem by Sean Ty

Algebra Level 3

What is the value of ( 7 + 5 ) 6 \lfloor(\sqrt{7}+\sqrt{5})^{6}\rfloor ?

  • . . . \lfloor...\rfloor denotes the floor function.


The answer is 13535.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tom Zhou
Jul 20, 2014

Firstly, we prove that 7 5 < 1 \sqrt{7}-\sqrt{5}<1 .

Proof: Since 121 < 140 121<140 , we have that 11 < 2 35 11<2\sqrt{35} or 12 2 35 < 1 12-2\sqrt{35}<1 . Taking the square root of both sides gives us the desired 7 5 < 1 \sqrt{7}-\sqrt{5}<1 .

Now consider the expression ( 7 + 5 ) 6 + ( 7 5 ) 6 (\sqrt{7}+\sqrt{5})^6+(\sqrt{7}-\sqrt{5})^6 . When we expand it using the binomial theorem, all terms with an odd power of 5 \sqrt{5} (and thus all odd powers of 7 \sqrt{7} ) all cancel, leaving, only an integer to deal with. Expanding gives

( ( 6 0 ) 7 6 + ( 6 1 ) 7 5 ( 5 ) 1 + + ( 6 6 ) ( 5 6 ) ( ( 6 6 ) 7 6 + ( 6 1 ) 7 5 ( 5 ) 1 + + ( 6 6 ) ( 5 ) 6 ) (\binom{6}{0}\sqrt{7}^6+\binom{6}{1}\sqrt{7}^5(\sqrt{5})^1+\cdots+\binom{6}{6}(\sqrt{5}^6)-(\binom{6}{6}\sqrt{7}^6+\binom{6}{1}\sqrt{7}^5(-\sqrt{5})^1+\cdots+\binom{6}{6}(-\sqrt{5})^6) = 2 ( 7 3 ) + 2 ( 6 2 ) ( 7 2 ) ( 5 ) + 2 ( 6 4 ) ( 7 ) ( 5 2 ) + 2 ( 5 3 ) =2(7^3)+2\binom{6}{2}(7^2)(5)+2\binom{6}{4}(7)(5^2)+2(5^3) = 13536 =13536 .

Earlier we proved that 7 5 < 1 \sqrt{7}-\sqrt{5}<1 so that ( 7 5 ) 6 < 1 (\sqrt{7}-\sqrt{5})^6<1 . Since ( 7 + 5 ) 6 + ( 7 5 ) 6 = 13536 (\sqrt{7}+\sqrt{5})^6+(\sqrt{7}-\sqrt{5})^6=13536 , then we have that ( 7 + 5 ) 6 = 13536 ( 7 5 ) 6 (\sqrt{7}+\sqrt{5})^6=13536-(\sqrt{7}-\sqrt{5})^6 . Thus 13536 1 < ( 7 + 5 ) 6 < 13536 13536-1<(\sqrt{7}+\sqrt{5})^6<13536 so ( 7 + 5 ) 6 = 13535 \lfloor{(\sqrt{7}+\sqrt{5})^6}\rfloor=\boxed{13535} .

نظرية ذات الحدين:D

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...