Is it always true?

Algebra Level 1

1 1 + x b c + x b a + 1 1 + x c a + x c b + 1 1 + x a b + x a c = ? \large \frac { 1 }{ 1+{ x }^{ b-c }+{ x }^{ b-a } } +\frac { 1 }{ 1+{ x }^{ c-a }+{ x }^{ c-b } } +\frac { 1 }{ 1+{ x }^{ a-b }+{ x }^{ a-c } } = \ ?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Majed Musleh
May 31, 2015

x a + c x a + c ( 1 + x b c + x b a ) + x a + b x a + b ( 1 + x c a + x c b ) + x b + c x b + c ( 1 + x a b + x a c ) \frac{x^{a+c}}{x^{a+c}(1+x^{b-c}+x^{b-a})}+\frac{x^{a+b}}{x^{a+b}(1+x^{c-a}+x^{c-b})}+\frac{x^{b+c}}{x^{b+c}(1+x^{a-b}+x^{a-c})}

= x a + c x a + c + x a + b + x b + c + x a + b x a + b + x b + c + x a + c + x b + c x b + c + x a + c + x a + b =\frac{x^{a+c}}{x^{a+c}+x^{a+b}+x^{b+c}}+\frac{x^{a+b}}{x^{a+b}+x^{b+c}+x^{a+c}}+\frac{x^{b+c}}{x^{b+c}+x^{a+c}+x^{a+b}}

= x a + c + x a + b + x b + c x a + c + x a + b + x b + c =\frac{x^{a+c}+x^{a+b}+x^{b+c}}{x^{a+c}+x^{a+b}+x^{b+c}}

= 1 =\boxed{1}

Moderator note:

Good. Bonus question : Does this equation satisfy for all x x ?

x 0 x\neq 0

Majed Musleh - 6 years ago

Log in to reply

Well done!

José Alejandro
Feb 9, 2019

Let w = x a + x b + x c w = x^{-a} + x^{-b} + x^{-c} . The equation now becomes: 1 w x b + 1 w x c + 1 w x a \frac{1}{wx^{b}} + \frac{1}{wx^{c}} + \frac{1}{wx^{a}} Using exponent rules, we can rewrite this as: w 1 x b + w 1 x c + w 1 x a w^{-1}x^{-b} + w^{-1}x^{-c} + w^{-1}x^{-a} Notice that we can factor out the w w and use substitution. w 1 ( x a + x b + x c ) = w 1 ( w ) = w w = 1 w^{-1}(x^{-a}+x^{-b}+x^{-c}) = w^{-1}(w) = \frac{w}{w} = \boxed{1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...