4. An algebra problem by Sompong Chuisurichy

Algebra Level 5

Let A A be a 2 × 2 2\times 2 real matrix satisfying

A 2 + 7 A + 31 I = 0 A^2 + 7A + 31I = 0

where I I is the identity matrix.

Find det ( A + I ) \det(A+I) .


The answer is 25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let A = ( a b c d ) A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}

Then we get,

A 2 + 7 A + 31 I = ( a 2 + 7 a + b c + 31 a b + b d + 7 b c a + c d + 7 c d 2 + b c + 7 d + 31 ) = 0 A^2 + 7A + 31I =\begin{pmatrix} a^2+7a+bc+31 & ab+bd+7b \\ ca+cd+7c & d^2+bc+7d+31 \end{pmatrix} =0

so we have 4 equations,

a 2 + 7 a + b c + 31 = 0 ( 1 ) a^2+7a+bc+31=0 \cdots(1)

a b + b d + 7 b = 0 ( 2 ) ab+bd+7b=0 \cdots(2)

c a + c d + 7 c = 0 ( 3 ) ca+cd+7c=0 \cdots(3)

d 2 + b c + 7 d + 31 = 0 ( 4 ) d^2+bc+7d+31=0 \cdots(4)

Dividing eq (2) or eq (3) by c c we get,

a + b + 7 = 0 ( 5 ) a+b+7=0 \cdots(5)

Subtracting eq (4) from eq (1) we get,

a 2 d 2 + 7 a 7 d = ( a d ) ( a + d + 7 ) = 0 a^2-d^2+7a-7d=(a-d)(a+d+7)=0

a d = 0 \Rightarrow a-d=0

a = d \Rightarrow a=d

Substitute a = d a=d in eq (5) we get,

a = d = 7 2 a=d= - \frac{7}{2}

Substitute value of a a in eq (1) we get,

b c = 75 4 bc= - \frac{75}{4}

Now,

d e t ( A + I ) = ( a + 1 ) ( d + 1 ) b c = 25 det(A+I)= (a+1)(d+1)-bc= \fbox{25}

Some typing mistakes should be changed. Starting with "Dividing eq (2) by b b or eq (3) by c c we get, a + d + 7 = 0... a+d+7=0 ... (5) "

Bob Kadylo - 5 years, 5 months ago
Payas Khurana
Jun 2, 2021

Characteristic polynomial of A = x 2 + 7 x + 31 x^2 + 7x + 31 , to get the characteristic polynomial of A + I A+I we transform the roots by putting y = x + 1 y= x + 1 so x = y 1 x = y-1 now the characteristic polynomial of A + I A+I as ( y 1 ) 2 + 7 ( y 1 ) + 31 = y 2 + 5 y + 25 (y-1)^2 + 7(y-1) + 31 = y^2 +5y + 25 so d e t ( A + I ) = 25 det(A + I ) = 25

Ashutosh Sharma
Jan 25, 2018

trick here is to use Cayley Hamilton theorem

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...