An algebra problem by Sompong Chuisurichy

Algebra Level 4

Let a , b , c a,b,c be real numbers such that 0 < a < b < c 0<|a|<|b|<|c| . How many possible values of a a + b b + c c + a + b a + b + b + c b + c + c + a c + a ? \dfrac{a}{|a|} + \dfrac{b}{|b|} + \dfrac{c}{|c|} + \dfrac{a+b}{|a+b|}+\dfrac{b+c}{|b+c|}+\dfrac{c+a}{|c+a|}?


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Oct 26, 2018

Note the following:

a a = { 1 if a < 0 + 1 if a > 0 b b = { 1 if b < 0 + 1 if b > 0 c c = { 1 if c < 0 + 1 if c > 0 a + b a + b = { 1 if b < 0 + 1 if b > 0 b + c b + c = { 1 if c < 0 + 1 if c > 0 c + a c + a = { 1 if c < 0 + 1 if c > 0 \begin{array} {cl} \dfrac a{|a|} & = \begin{cases} - 1 & \text{if }a < 0 \\ +1 & \text{if }a>0 \end{cases} \\ \dfrac b{|b|} & = \begin{cases} - 1 & \text{if }b < 0 \\ +1 & \text{if }b>0 \end{cases} \\ \dfrac c{|c|} & = \begin{cases} - 1 & \text{if }c < 0 \\ +1 & \text{if }c>0 \end{cases} \\ \dfrac {a+b}{|a+b|} & = \begin{cases} - 1 & \text{if }b < 0 \\ +1 & \text{if }b>0 \end{cases} \\ \dfrac {b+c}{|b+c|} & = \begin{cases} - 1 & \text{if }c < 0 \\ +1 & \text{if }c>0 \end{cases} \\ \dfrac {c+a}{|c+a|} & = \begin{cases} - 1 & \text{if }c < 0 \\ +1 & \text{if }c>0 \end{cases} \end{array}

Therefore,

X = a a + b b + c c + a + b a + b + b + c b + c + c + a c + a = a a + 2 b b + 3 c c = { 6 when a < 0 , b < 0 , c < 0 4 when a > 0 , b < 0 , c < 0 2 when a < 0 , b > 0 , c < 0 0 when a > 0 , b > 0 , c < 0 and a < 0 , b < 0 , c > 0 + 2 when a > 0 , b < 0 , c > 0 + 4 when a < 0 , b > 0 , c > 0 + 6 when a > 0 , b > 0 , c > 0 \begin{aligned} X & = \frac a{|a|} + \frac b{|b|} + \frac c{|c|} + \frac {a+b}{|a+b|} + \frac {b+c}{|b+c|} + \frac {c+a}{|c+a|} \\ & = \frac a{|a|} + \frac {2b}{|b|} + \frac {3c}{|c|} \\ & = \begin{cases} - 6 & \text{when }a < 0,\ b < 0, \ c < 0 \\ - 4 & \text{when }a > 0, \ b < 0, \ c < 0 \\ - 2 & \text{when }a < 0, \ b > 0, \ c < 0 \\ \ \ \ 0 & \text{when }a > 0, \ b > 0, \ c < 0 \text{ and } a < 0, \ b < 0, \ c > 0 \\ + 2 & \text{when }a > 0, \ b < 0, \ c > 0 \\ + 4 & \text{when }a < 0, \ b > 0, \ c > 0 \\ + 6 & \text{when }a > 0, \ b > 0, \ c > 0 \end{cases} \end{aligned}

There are 7 \boxed 7 possible values for X X .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...